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Abstract. We show that the Multistage Stochastic Linear Problem (MSLP) with an arbitrary4
cost distribution is equivalent to a MSLP on a finite scenario tree. We establish this exact quan-5
tization result by analyzing the polyhedral structure of MSLPs. In particular, we show that the6
expected cost-to-go functions are polyhedral and affine on the cells of a chamber complex, which7
is independent of the cost distribution. This leads to new complexity results, showing that MSLP8
becomes polynomial when certain parameters are fixed.9

1. Introduction. Stochastic programming is a powerful modeling paradigm for10

optimization under uncertainty that has found many applications in energy, logistics11

or finance (see e.g., [49]). Multistage Stochastic Linear Problems (MSLP) constitute12

an important class of stochastic programs. They have been thoroughly studied, see13

e.g., [5, 42]. One reason for this interest is the availability of efficient linear solvers and14

the use of dedicated algorithms leveraging the special structure of linear stochastic15

programs ([54, 4]).16

In this paper, we show that every MSLP with general cost distribution is equiv-17

alent to an MSLP with finite distribution. This leads to explicit representations of18

their value functions and to new complexity results.19

1.1. Multistage stochastic linear programming. Let (Ω,A,P) be a proba-20

bility space. Given a sequence of independent random variables ct ∈ L1(Ω,A,P;Rnt)21

and ξt = (At,Bt, bt), with t ∈ [T ] := {1, . . . , T}, we consider the MSLP given by22

(1.1)

min
(xt)t∈[T ]

c⊤1 x1 + E
[ T∑
t=2

c⊤t xt
]

s.t. A1x1 ⩽ b1,

Atxt +Btxt−1 ⩽ bt a.s. ∀t ∈ {2, . . . , T},
xt ∈ L∞(Ω,A,P;Rnt) ∀t ∈ {2, . . . , T},
xt ≼ Ft ∀t ∈ {2, . . . , T},

23

where x1 ≡ x1, A1 ≡ A1 and b1 ≡ b1 are deterministic and Ft is the σ-algebra gen-24

erated by (c2, ξ2, . . . , ct, ξt). The last constraint, known as nonanticipativity, means25

that xt is measurable with respect to Ft.26

Most results for MSLP with continuous distributions rely on discretizing the dis-27

tributions. The Sample Average Approximation (SAA) method (see e.g., [49, Chap.28

5]) samples the costs and constraints. It relies on probabilistic results based on a29

uniform law of large number to give statistical guarantees. Obtaining a good approx-30

imation requires a large number of scenarios. In order to alleviate the computations,31

we can use scenario reduction techniques (see [14, 27]). Latin Hypercube Sampling32

(LHS) and variance reduction methods are also used to produce scenarios. Finally,33

one generates heuristically “good” scenarios, representing the underlying distribution34

(see [28]). Alternatively, we can leverage the structure of the problem to produce35
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finite scenario trees (see [30, 37, 16]) that yields bounds for the value of the true op-36

timization problem. In each of these approaches, one solves an approximate version37

of the stochastic program, with or without statistical guarantee.38

With the independence assumption, Problem (1.1) is often tackled through Dy-39

namic Programming approaches. One well-developed approach is the Stochastic Dual40

Dynamic Programming algorithm (SDDP) [40, 48], and its brethren, largely used in41

energy applications. Until the recent work [18], leveraging the tools developed here,42

these algorithms required finitely supported distribution, often obtained through SAA.43

1.2. The exact quantization problem. Here, we aim at solving exactly the44

original problem, by finding an equivalent formulation with discrete distributions.45

This notion of equivalent formulation is best understood through the dynamic pro-46

gramming approach of MSLP. We define the cost-to-go function Vt inductively as47

follows. We set VT+1 ≡ 0 and for all t ∈ {2, . . . , T}:48

(1.2)

Vt(xt−1) := E
[
V̂t(xt−1, ct, ξt)

]
,

V̂t(xt−1, ct, ξt) := min
xt∈Rnt

c⊤t xt + Vt+1(xt)

s.t. Atxt +Btxt−1 ⩽ bt.

49

where xt−1 ∈ Rnt−1 , ct ∈ Rnt and ξt := (At, Bt, bt) ∈ Rℓt×nt × Rℓt×nt−1 × Rℓt = Ξt.50

We choose to distinguish the random cost ct from the noise ξt affecting the con-51

straints. Indeed our results require ξt to be finitely supported (see ?? and Example 1)52

while ct can have a continuous distribution. This separation does not preclude cor-53

relation between ct and ξt. However, we require {(ct, ξt)}t∈[T ] to be a sequence of54

independent random variables to leverage Dynamic Programming, even though some55

results can be extended to dependent (ξt)t∈[T ].56

We say that a MSLP (with stagewise independence) admits a local exact quanti-57

zation at time t at xt−1 if there exists a finitely supported (čt, ξ̌t)t∈[T ] that yields the58

same expected cost-to-go functions i.e., such that59

Vt(xt−1) = E
[
V̂t(xt−1, ct, ξt)

]
= E

[
V̂t(xt−1, čt, ξ̌t)

]
.60

A quantization is uniform if it is locally exact at all xt−1 ∈ Rnt , and all t ∈ [T ].61

Corollary 1.1. If there exists a uniform exact quantization for Problem (1.1),62

then the expected cost-to-go functions Vt are polyhedral.63

Proof. It is well known (see e.g., , [49, prop 2.15]) that a finitely supported MSLP64

admits polyhedral expected cost-to-go functions.65

Example 1 (No uniform exact for stochastic constraints). Here, u denotes66

a uniform random variable on [0, 1]. We consider two simple example with stochastic67

B and b respectively.68

V 1(x) = E


min
y∈R

y

s.t. ux ⩽ y

1 ⩽ y

 = E
[
max(ux, 1)

]
=

{
1 if x ⩽ 1
x
2 + 1

2x if x ⩾ 1
.69
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V 2(x) = E


min
y∈R

y

s.t. u ⩽ y

x ⩽ y

 = E
[
max(x,u)

]
=


1
2 if x ⩽ 0
x2+1

2 if x ∈ [0, 1]

x if x ⩾ 1

.70

As both cost-to-go functions are not polyhedral, we cannot hope to find uniform71

exact quantizations in these cases.72

1.3. Contribution. We develop a geometric approach, which enlightens the73

polyhedral structure of MSLP. We first establish exact quantization results in the74

2-stage case showing that there exists an optimal recourse affine on each cell of a75

polyhedral complex which is precisely the chamber complex [3, 44], a fundamental76

object in combinatorial geometry. A chamber complex is defined as the common77

refinement of the projections of faces of a polyhedron. In particular, Theorem 3.278

provides an explicit exact quantization, in which the quantized probabilities and costs79

are attached to the cones of a polyhedral fan N (we refer the reader to [13, 58, 25, 20]80

for background on polyhedral complexes and fans). On each cone N ∈ N , we replace81

the distribution of c1riN , where riN stand for the relative interior of N , by a Dirac82

distribution concentrated on the expected value čN = E
[
c|c ∈ riN

]
, and an associated83

weight p̌N = P
[
c ∈ riN

]
. Further, N is universal in the sense that it does not depend84

on the distribution of c.85

In order to extend this result to the multistage case we establish in Lemma 4.186

a Dynamic Programming type equation in the space of polyhedral complexes. Then87

we show an exact quantization result in Theorem 4.6.88

We apply this polyhedral approach to obtain polynomial time complexity results89

considering both the exact computation problem and the approximation problem,90

when certain parameters are fixed. For distributions that are uniform on polytopes or91

exponential, we show the MSLP can be solved in a time that is polynomial provided92

that the horizon T and the dimensions n2, . . . , nT of the successive recourses are fixed.93

The proof relies on the theory of linear programming with oracles [24] as well as on94

upper bound theorems of McMullen [39] and Stanley [52] concerning the number of95

vertices and the size of a triangulation of a polyhedron. We obtain a similar result for96

the approximation problem. This is more widely applicable since the distribution cost97

can now be essentially arbitrary; we only assume that it is given implicitly through an98

appropriate oracle (see Definition 5.10) – this applies in particular to any distribution99

with a smooth density with respect to Lebesgue measure.100

In summary, our main contributions, shedding light on the geometry of polyhedral101

stochastic programming problems, are the following:102

1. MSLP with arbitrary cost distribution and finitely supported constraints ad-103

mit a uniform exact quantization result, i.e., are equivalent to MSLP with104

discrete cost distribution;105

2. The expected cost-to-go functions of such MSLP are polyhedral and affine106

on the cells of a universal polyhedral complex (i.e., independent of the cost107

distribution) which is precisely the chamber complex;108

3. In the 2-stage case, the expected cost-to-go function is characterized in terms109

of a weighted extension of the fiber polytope;110

4. We give polynomial time complexity results for 2SLP and MSLP, in exact111

and approximate models of computations, when certain parameters are fixed.112
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1.4. Comparison with related work. The pioneering work of Walkup and113

Wets [56] developed a combinatorial approach of deterministic parametric linear pro-114

gramming. Higher notions of polyhedral geometry, such as secondary fan and fiber115

polytopes, were subsequently introduced, with motivations from outside of optimiza-116

tion, by Gelfand, Kapranov and Zelevinsky [22] and by Billera and Sturmfels [3].117

Thomas and Sturmfels [53] and later De Loera, Rambau and Santos [13] established118

important links between these concepts and (parametric) linear optimization. Fiber119

polytopes are still of considerable interest. In particular, Black, De Loera, Lütje-120

harms, and Sanyal applied recently a special class of fiber polytopes, the monotone121

path polytopes, in which the projection keeps track of the level-set value of the cost122

function, in order to classify simplex iterations [7], see also [6]. Moreover, a general-123

ization of fiber polytopes to the non-polyhedral case, called “fiber convex bodies”, has124

been recently considered [38]. Here, our contribution shows how polyhedral notions125

explain the quantization problem. Further, we consider general cost distributions in126

many of the statements, and in particular, we extend the notion of fiber polytope127

by considering non-uniform measures, which is needed in applications to stochastic128

optimization.129

More precisely, the basis decomposition theorem of Walkup and Wets describes130

how the value of a linear program in standard form varies with respect to the cost131

and to the right-hand side of the constraints. In the 2-stage case, we can see the132

collection of rows of A as a vector configuration, and the right-hand side of the re-133

course problem b − Bx as a height function which determines a regular subdivision134

of this configuration. The space of regular subdivision is represented by the so called135

secondary fan [13]. We may apply this theorem to the dual problem of the recourse136

problem to deduce that the expected cost-to-go function is affine on each cell of an137

affine section of the secondary fan. This affine section can be shown to coincide with138

the chamber complex used here. However, the basis decomposition theorem cannot be139

applied to the extensive form of a multistage problem. In particular nonanticipativity140

constraints cannot be tackled in this way. Thus, we choose to develop an approach141

through chamber complexes as it is more direct, allowing us to obtain also a result in142

the multistage case.143

The complexity of stochastic programming has been extensively studied. Dyer144

and Stougie [15] proved that 2-stage stochastic programming with discrete distribution145

is ♯P -hard, by reducing to it the problem of graph reliability. Hanasusanto, Kuhn and146

Wiesemann [26] showed that solving, with a sufficiently high accuracy, the 2-stage147

linear programming (2SLP) with continuous distribution is also ♯P -hard, exploiting148

the ♯P -completeness of the computation of the volume of knapsack polytopes and149

order polytopes. Shapiro and Nemirovski showed in [50] that 2SLP (and MSLP with150

fixed horizon) can be approximated, with high probability and up to precision ε,151

by the SAA method with a number of scenario polynomial in 1/ε. Furthermore,152

[51] showed that 2SLP (also true for first-stage integer decision) can be solved, with153

high probability, in a pseudo-polynomial time, i.e., polynomial in 1/ε and in the154

input size. In contrast, our approach shows that 2SLP and MSLP can be solved in155

polynomial time in log(1/ε) when certain parameters are fixed. Thus, a high accuracy156

is accessible, but only for a restricted class of instances. This should also be compared157

with results of Lan [31] and Zhang and Sun [57], who independently analyzed the158

complexity of SDDP. It follows from their results that finitely supported MSLP can159

be solved approximately in pseudo-polynomial time in the error approximation ε when160

all the dimensions and the horizon are fixed. In particular, the complexity of these161

SDDP methods is polynomially bounded in 1/ε. In contrast, our approach shows162
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that MSLP can be solved approximately in polynomial time in log(1/ε), when T ,163

n2, . . . , nT are fixed. In particular, the first state dimension is not fixed. Moreover,164

we obtain polynomial complexity bounds in the exact (Turing) model of computation165

for appropriate classes of distributions. Note that in the approach presented here,166

contrary to SDDP like methods, we do not rely on statistical sampling and the value167

functions are computed exactly in one pass only. However, the objective of SDDP168

is to obtain quickly an approximate solution whereas our approach computes exactly169

the epigraph of the expected cost-to-go function.170

The complexity of multistage stochastic integer linear programs, with finitely171

supported distribution, have recently been studied in [29] based on results for two-172

stage integer programs compiled in [12, Chapter 4].173

1.5. Structure of the paper. We recall, in Section 2, notions from the theory of174

polyhedra: polyhedral complexes, normal fans and chamber complexes. In Section 3 we175

establish the exact quantization result for 2SLP. In Section 4, we show that chamber176

complexes can be propagated through dynamic programming, leading to the exact177

quantization result for the MSLP. Finally, in Section 5, we draw the consequences of178

our results in terms of computational complexity.179

1.6. Notation. As a general guideline bold letters denote random variables,180

normal scripts their realisation. Capital letters denote matrices or sets, calligraphic181

(e.g., N ) denote collections of sets. The indicator function IP (resp. 1P) takes value182

0 (resp. 1) if P is true and +∞ (resp. 0) otherwise. We set [k] := {1, . . . , k}, and we183

denote by ♯E the cardinal of a set E. We denote by Cone(A) := ARn+ the conic hull of184

the columns of A. The inequality x ⩽ y refers to the standard partial order, given by185

∀i, xi ⩽ yi. We denote by F ⊂ G if F is a subface of G. Further, ri(E) is the relative186

interior of the set E, i.e., the greatest open set included in E for the topology of the187

smallest vector subspace containing E. Moreover, dom(f) = {x | f(x) < +∞} is the188

domain of f , and epi(f) = {(x, z) | f(x) ⩽ z} the epigraph of f . Finally, ⊔ denotes a189

disjoint union.190

2. Polyhedral tools. Our proofs rely on the notions of normal fan and chamber191

complex of a polyhedron recalled here. These polyhedral objects reveal the geomet-192

rical structure of MSLP. Both the normal fan and the chamber complex are special193

polyhedral complexes.194

2.1. Polyhedral complexes. Polyhedral complexes are collections of polyhedra195

satisfying some combinatorial and geometrical properties. In particular the relative196

interiors of the elements of a polyhedral complex (without the empty set) form a197

partition of their union. We refer to [13] for a complete introduction to polyhedral198

complexes and triangulations.199

Definition 2.1 (Polyhedral complex). A finite collection C of polyhedra is a200

polyhedral complex if it satisfies i) if P ∈ C and F is a non-empty1 face of P then201

F ∈ C and ii) if P and Q are in C, then P ∩Q is a (possibly empty) face of P and Q.202

Elements of a polyhedral complex are called cells. We denote by supp C :=
⋃
P∈C P203

the support of a polyhedral complex. Further, if all the elements of C are polytopes204

(resp. cones, simplices, simplicial cones), we say that C is a polytopal complex (resp.205

a fan, a simplicial complex, a simplicial fan).206

1For some authors, a polyhedral complex must contain the empty set. We do not make this
requirement.
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We recall that a simplex of dimension d is the convex hull of d + 1 affinely in-207

dependent point and that a simplicial cone of dimension d is the conical hull of d208

linearly independent vectors.209

Proposition 2.2. For any polyhedral complex C, the relative interiors of its ele-210

ments (without the empty set) form a partition of its support: supp(C) =
⊔
P∈C

ri(P ).211

For example, the set of faces F(P ) of a polyhedron P is a polyhedral complex.212

Definition 2.3 (Refinements and triangulation). Let C and R be two polyhedral213

complexes, we say that R is a refinement of C, denoted R ≼ C, if suppR = supp C214

and for every cell R ∈ R there exists a cell C ∈ C containing R: R ⊂ C.215

Note that ≼ defines a partial order and the meet associated with this order is216

given by the common refinement of two polyhedral complexes C and C′ defined as the217

polyhedral complex of the intersections of cells of C and C′2 :218

C ∧ C′ := {R ∩R′ |R ∈ C, R′ ∈ C′}.219

A triangulation T of a polytope Q is a refinement of F(Q) such that the cells of220

dimension 0 of T are the vertices of Q and T is a simplicial complex. A triangulation221

T of a cone K is a refinement of F(K) such that the cells of dimension 1 of T are222

the rays of K and T is a simplicial fan.223

2.2. Normal fan. The normal fan is the collection of the normal cones of all224

faces of a polyhedron. See [36] for a review of normal fan properties.225

Recall that the normal cone of a convex set C ⊂ Rd at the point x is the set226

NC(x) := {α ∈ Rd | ∀y ∈ C, α⊤(y − x) ⩽ 0}. More generally, for a set E ⊂ C,227

NC(E) :=
⋂
x∈E NC(x).228

P
P ′

Figure 1: Two normally equivalent polytopes P and P ′ and their normal fan N (P ) =
N (P ′). The green circle represents the singleton {0} which is the normal cone NP (x)
for every x ∈ ri(P ).

Definition 2.4 (Normal fan). The normal fan3 of a convex set C is the collection229

of normal cones230

N (C) := {NC(x) | x ∈ C}.231

We say that two convex sets C and C ′ are normally equivalent if they have the same232

normal fan: N (C) = N (C ′), see Figure 1.233

2We allow C and C′ to have different supports. In that case, C ∧ C′ is well-defined but there is no
common refinement. The support of C ∧ C′ is then equal to the intersection supp C ∩ supp C′.

3Sometimes called outer normal cones and fan, as opposed to inner cones obtained either by
inverting the inequality in the definition of the normal cone or by taking the opposite cones respect
to the origin.
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Recall that the polar of a convex set C is the set C◦ := {α ∈ Rd | ∀x ∈ C, α⊤x ⩽234

0} = NC(0) and the recession cone of a convex set C is given by rc(C) := {r ∈235

C | ∀µ ∈ R+, ∀x ∈ C, x + µr ∈ C}. In particular, for a polyhedron, the recession236

cone and its polar are given by237

(2.1) rc
(
{x | Ax ⩽ b}

)
= {x | Ax ⩽ 0} rc

(
{x | Ax ⩽ b}

)◦
= Cone(A⊤) .238

Proposition 2.5 (Basic properties of normal fans (see e.g., [36])).239

If P is a polyhedron, the normal fan N (P ) is a polyhedral complex. Further, the240

support of N (P ) can be expressed as the polar of the recession cone of P , i.e.,241

(2.2) suppN (P ) =
(
rc(P )

)◦
.242

2.3. Chamber complex. The affine regions of the cost-to-go function will cor-243

respond to cells of a chamber complex. Projections of polyhedra, fibers and chambers244

complexes are studied in [3, 44, 43].245

Definition 2.6 (Chamber complex). Let P ⊂ Rd be a polyhedron and π a linear246

projection defined on Rd. For x ∈ π(P ) we define the chamber of x for P along π as247

σP,π(x) :=
⋂

F∈F(P ) s.t. x∈π(F )

π(F ).248

The chamber complex C(P, π) of P along π is defined as the (finite) collection of249

chambers, i.e.,250

C(P, π) := {σP,π(x) | x ∈ π(P )} .251

Further C(P, π) is a polyhedral complex such that supp C(P, π) = π(P ). In partic-252

ular,
{
ri(σ) |σ ∈ C(P, π)

}
is a partition of π(P ).253

More generally, the chamber complex of a polyhedral complex P is254

C(P, π) := {σP,π(x) | x ∈ π
(
supp(P)

)
} .255

with σP,π(x) :=
⋂

F∈P s.t. x∈π(F )

π(F ).256

Lemma 2.7 (Chamber complex monotonicity with respect to refinement order).257

Let R ≼ S be polyhedral complexes of Rd and a projection π. Then, C(R, π) ≼ C(S, π).258

Proof. For any R ∈ R, there exists SR ∈ S such that R ⊂ SR. Let x ∈259

supp C(R, π) = π(suppR) = π(suppS) = supp C(S, π)260

σR,π(x) :=
⋂

R∈R s.t. x∈π(R)

π(R) ⊂
⋂

R∈R s.t. x∈π(R)

π(SR)261

⊂
⋂

S∈Ss.t. x∈π(S)

π(S) =: σS,π(x) ∈ C(S, π).262

263

Recall that the fiber Px of P along π at x is the projection of P ∩ π−1({x}) on264

the space Ker(π) (see Figure 2). An important property of a chamber complex is265

that all fibers are normally equivalent in each relative interior of cells of the chamber266

complex. More precisely, let σ ∈ C(P, π) be a chamber, and x and x′ two points in its267
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Im(π)

Ker(π)

• • • ••••
C(P, π)

x
π
−
1
({
x
})

∩
P

•

Px

•

•
F

•

•
π(F )

•
•

π(P )
•

Figure 2: A polytope P and its projection π(P ) in green, its chamber complex in red
on the x-axis and a fiber Px in blue on the y-axis, for the orthogonal projection π on
the horizontal axis, a face F and its projection π(F ) in purple.

relative interior, then, Px and Px′ are normally equivalent, see [3]. Thus, we define268

the normal fan Nσ above4 σ ∈ C(P, π) by:269

Nσ := N (Px) for an arbitrary x ∈ ri(σ).270

The terms parametrized polyhedron, instead of fibers, and validity domains, instead of271

chambers, are also used in the literature [10, 35].272

3. Exact quantization of the 2-stage problem. Let (Ω,A,P) be a prob-273

ability space, c ∈ L1(Ω,A,P;Rm) be an integrable random vector, and suppose274

ξ = (A,B, b) is deterministic. We study the expected cost-to-go function of the275

2-stage stochastic linear problem, written as276

(3.1)
V (x) := E

[
V̂ (x, c)

]
with V̂ (x, c) := min

y∈Rm
c⊤y

s.t. Ay +Bx ⩽ b.
277

The dual of the latter problem, for given x and c, is278

max
λ∈Rℓ

(Bx− b)⊤λ(3.2)279

s.t. A⊤λ = −c,280

λ ⩾ 0.281282

We denote the coupling constraint polyhedron of Problem (3.1) by283

P := {(x, y) ∈ Rn+m | Ay +Bx ⩽ b},284

and π the projection of Rn × Rm onto Rn such that π(x, y) = x.285

4The normal fan Nσ ⊂ 2Ker(π) above σ should not be confused with N (σ) ⊂ 2Im(π) the normal
fan of σ which will never appear in this paper.
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The projection of P is the following polyhedron:286

(3.3) π(P ) = {x ∈ Rn | ∃y ∈ Rm, Ay +Bx ⩽ b},287

and for any x ∈ Rn, the fiber of P along π is288

(3.4) Px := {y ∈ Rm | Ay +Bx ⩽ b}.289

3.1. Chamber complexes arising from 2-stage problems. The following290

lemma provides an explicit formula for the cost-to-go function. It shows that an291

optimal recourse can be chosen as a function of c that is piecewise constant on the292

normal fan of Px.293

Lemma 3.1. Let x ∈ Rn and c ∈ Rm,294

1. If x /∈ π(P ), then V̂ (x, c) = +∞;295

2. If x ∈ π(P ) and −c /∈ Cone(A⊤), then V̂ (x, c) = −∞;296

3. Suppose now that x ∈ π(P ) and −c ∈ Cone(A⊤). For each297

cone N ∈ N (Px), let us select in an arbitrary manner a vector cN in ri(−N).298

Then, there exists a vector yN (x) which achieves the minimum in the ex-299

pression of V̂ (x, cN ) in (3.1), independently of the choice of cN ∈ ri(−N).300

Further, for any selection of such a yN (x), we have301

V̂ (x, c) =
∑

N∈N (Px)

1c∈− riN c⊤yN (x) .(3.5)302

303

Proof. The first point comes from the definitions of π(P ) in (3.3) and V̂ (x, c) in304

(3.1). If x ∈ π(P ) and −c /∈ Cone(A⊤), then the primal problem (3.1) is feasible and305

the dual problem is (3.2) infeasible. Thus, by strong duality, V̂ (x, c) = −∞.306

By (2.2), we have that
(
rc(Px)

)◦
= suppN (Px). Further, by (2.1) all non-empty307

fibers Px have the same recession cone {y | Ay ⩽ 0} whose polar is Cone(A⊤).308

Assume now that x ∈ π(P ) and −c ∈ Cone(A⊤) = supp(N (Px)). Then, there309

exists N ∈ N (Px) such that −c ∈ ri(N). Moreover, for every choice of cN ∈ − ri(N),310

we have argminy∈Px
c⊤y = argminy∈Px

c⊤Ny, see e.g., [36, Cor. 1(c)]. Moreover,311

there exists yN (x) such that N = NPx

(
yN (x)

)
by definition of a normal cone, thus312

yN (x) ∈ argminy∈Px
c⊤Ny; in particular, the latter argmin is non-empty. Thus, when313

−c ∈ ri(N), V̂ (x, c) = c⊤yN (x).314

Thanks to the partition property of Proposition 2.2, we know that c belongs315

to the relative interior of precisely one cone in the normal fan of Px, in particular316

1 =
∑
N∈N (Px)

1c∈− riN leading to (3.5).317

Having this property in mind, we make the following assumption:318

Assumption 1. The cost c ∈ L1(Ω,A,P;Rm) is integrable with c ∈ −Cone(A⊤)319

almost surely.320

Theorem 3.2 (Local, uniform quantizations of the cost distribution). Let321

x ∈ π(P ), and σ be a cell of C(P, π) the chamber complex of the coupling constraint322

polyhedron P along the projection π on the x-space. Assume that x ∈ ri(σ).323

Under Assumption 1, for every refinement R of −Nσ, we have:324

(3.6) V (x) =
∑
R∈R

p̌RV̂ (x, čR) with V̂ (x, čR) := min
y∈Rm

č⊤Ry + IAy+Bx⩽b.325

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
if p̌R > 0 and čR := 0 if p̌R = 0.326

In particular, if R is a refinement of
∧
σ∈C(P,π) −Nσ, (3.6) holds for all x ∈ π(P ).327
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This is an exact quantization result, since (3.6) shows that V (x) coincides with the328

value function of a second stage problem with a cost distribution supported by the329

finite set {čR | R ∈ R}.330

Proof. Let σ ∈ C(P, π) and x ∈ ri(σ) then, by definition, N (Px) = Nσ.331

For R ∈ R, there exists one and only one N ∈ −Nσ such that ri(R) ⊂ ri(N), that332

we denote N(R). Indeed, as R is a refinement of −Nσ, there exists at least one, and333

as −Nσ is a polyhedral complex it is unique.334

By Lemma 3.1, under Assumption 1 and since x ∈ π(P ),335

V (x) = E
[ ∑
N∈N (Px)

1c∈− riNc⊤yN (x)
]

336

= E
[ ∑
N∈−Nσ

∑
R∈R| ri(R)⊂ri(N)

1c∈riR c⊤yN (x)
]

by the partition property,337

=
∑
R∈R

E
[
1c∈riRc

⊤]yN(R)(x) by linearity,338

=
∑
R∈R

p̌Rč
⊤
RyN(R)(x),339

=
∑
R∈R

p̌R min
y∈Rm

č⊤Ry + IAy+Bx⩽b,340

341

the last equality is by definition of yN(R)(x) as čR ∈ N(R), which leads to (3.6).342

Note that R =
∧
σ∈Cmax(P,π) −Nσ satisfies the condition of Theorem 3.2 since if343

τ is a face of σ in the chamber complex, Nσ refines Nτ by [44, Lemma 2.2].344

3.2. Illustrative example and analytical formulas. In this section, we il-345

lustrate the exact quantization result on an example, for different distributions. To346

apply this result, we need to compute the quantized costs and probabilities čR and347

p̌R arising in Theorem 3.2. This can be done exactly for uniform, exponential and348

Gaussian distributions. The formulas of quantized probabilities and costs are summed349

up in Table 1. They rely on the exponential valuation of a simplicial cone (see [9]350

or [1, (8.2.2)]) in the exponential case, and on solid angles [45] for Gaussians (see351

[19] for details). We only provide these formulas for simplices or simplicial cones S352

with dim(S) = dim(supp c). This extends to any polyhedron R, through triangula-353

tion of R ∩ supp(c) into simplices and simplicial cones (Sk)k∈[l]. We then compute354

p̌R =
∑l
k=1 p̌Sk

and čR =
∑l
k=1 p̌Sk

čSk
/p̌R if p̌R ̸= 0 and čR = 0 otherwise. More-355

over, in [32], Lasserre showed analytical formulas to integrate polynomials on a simplex356

which open the door to formulas for distributions with polynomial densities, such as357

the Beta distribution. The approximation of the quantized costs and probabilities for358

general distributions is treated in subsection 5.2.359

Consider the following second-stage problem, with n = 1 and m = 2 :360

V (x) = E

min
y∈R2

c⊤y

s.t. ∥y∥1 ⩽ 1, y1 ⩽ x and y2 ⩽ x

 .361

The coupling polyhedron is P = {(x, y) ∈ R × R2 | ∥y∥1 ⩽ 1, y1 ⩽ x, y2 ⩽ x}362

presented in Figure 3, and its V-representation is the collection of vertices (0,−1, 0),363
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Uniform Exponential Gaussian

dP(c) 1c∈Q

Vold(Q)
dLAff(Q)(c)

eθ
⊤c1c∈K
ΦK(θ)

dLAff(K)(c)
e
− 1

2
c⊤M−2c

(2π)
m
2 detM

dc

supp c Polytope: Q Cone: K Rm

p̌S
Vold(S)

Vold(Q)

| det(Ray(S))|
ΦK(θ)

∏
r∈Ray(S)

1

−r⊤θ
Ang

(
M−1S

)
čS

1
d+1

∑
v∈Vert(S) v

(∑
r∈Ray(S)

−ri
r⊤θ

)
i∈[m]

√
2Γ(m+1

2
)

Γ(m
2
)

M SpCtr
(
S ∩ Sm−1

)
Table 1: Probabilities p̌S and expectations čS arising from different cost distributions
over simplicial cones or simplices S ⊂ supp(c) with dimS = dim(supp c), where LA
is the Lebesgue measure on an affine space A. We denote by Vert(S) the set of
extreme points of a simplex S and by Ray(S) a collection of arbitrary representatives

of extreme rays of a simplicial cone S. We denote by ΦP (θ) :=
∫
P
eθ

⊤cdLAff(P )(c) the
exponential valuation of P with parameter θ, (see [1]). The solid angle is denoted by
Ang and the spherical centroid by SpCtr (see [45]).

P x

y1

y2

x = −0.25x = 0.25x = 0.75 x = 1.5

• • • •x = −0.5 x = 0 x = 0.5 x = 1

C(P, π)

Figure 3: The coupling polyhedron P in blue, different cuts and fibers Px vertical in
yellow, and its chamber complex C(P, π) in red on the bottom.

(−0.5,−0.5,−0.5), (0, 0,−1), (1, 1, 0), (0.5, 0.5, 0.5), (1, 0, 1) and the ray (1, 0, 0). By364

projecting the different faces, we see that its projection is the half-line, π(P ) =365

[−0.5,+∞) and its chamber complex C(P, π) is the collection of cells composed of366

{−0.5}, [−0.5, 0], {0}, [0, 0.5], {0.5}, [0.5, 1], {1}, [1,+∞) as presented in Figure 3.367

As there are 4 different maximal chambers, there are 4 different classes of normally368

equivalent fibers as shown in Figure 4.369

We evaluate čN and p̌N for N ∈ −Nσ using the formulas of Table 1. For example,370

when c is uniform on the centered ball for the ∞-norm of radius R, Figure 5 shows371

the regions of which the areas and centroids need to be computed. We sum up V in372

Figure 6 and present its value in Table 2 for different distributions.373

3.3. Weighted fiber polyhedron. In this section, we provide an explicit rep-374

resentation of the expected cost-to-function in terms of the support function of a375
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y1

y2

(a) x = −0.25,
σ = [−0.5, 0]

y1

y2

(b) x = 0.25,
σ = [0, 0.5]

y1

y2

(c) x = 0.75,
σ = [0.5, 1]

y1

y2

(d) x ⩾ 1,
σ = [1,+∞)

Figure 4: Fibers Px in blue and their normal fan N (Px) = Nσ in green for various x.

••

• •
N5

N6

N3

• ••
•
•

•

(a) σ = [−0.5, 0]

••

• •
N5

N6
N4

N3 N2

• ••
•
•

•
•

•
•

•

(b) σ = [0, 0.5]

••

• •
N5

N1

N6
N4

N3 N2

• ••
•

•
•
•

•
•

•
•

•

(c) σ = [0.5, 1]

••

• •

N1N4

N3 N2

N6

•
•

•
•

•
•

•
•

(d) σ = [1,+∞)

Figure 5: Exact quantization illustrated. The normal fan Nσ in green with Ni =
W⊤
i R+, c is uniform on the support Q = −Q = B∞(0, R) in light orange, the sets

W⊤
i R+∩Q in red. The polyhedral complex Rσ shown in red or orange. The quantized

costs čN are determined by centroids (small circles in pink).

x

V (x)

-0.5 0 0.5 1

θ2e−θ∥c∥1

4 dc

uniform on norm 1 ball

uniform on norm ∞ ball
uniform on norm 2 ball

e
−

∥c∥22
2γ2

2πγ2 dc

Figure 6: Graph of function V for various distribution of c with R = θ = γ = 1.

weighted generalization of the notion of fiber polytope.376

In [3], given a polytope P and its image Q = π(P ) under a linear projection map-377

ping π, Billera and Sturmfels defined the fiber polytope of P over Q as the normalized378

Minkowski integral 1
Vol(Q)

∫
Q
Pxdx of bounded fibers Px (defined in (3.4)) where x is379

uniformly distributed on the polytope Q. We now extend the notion of fiber poly-380

tope. First, we allow the fibers to be polyhedron with non trivial recession cones and381
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dP(c) −0.5 ⩽ x ⩽ 0 0 ⩽ x ⩽ 0.5 0.5 ⩽ x ⩽ 1 1 ⩽ x

1∥c∥1⩽R

2R2 dc −7R
24

(1 + 2x) −R
24

(7 + 6x) −R
6
(2 + x) −R

2

θ2e−θ∥c∥1
4

dc −7
8θ

(1 + 2x) −1
8θ

(7 + 6x) −1
2θ

(2 + x) −3
2θ

1∥c∥∞⩽R

4R2 dc −R
12

(5 + 10x) −R
12

(5 + 4x) −R
6
(3 + x) −2R

3

e−∥c∥22/2γ2

2πγ2 dc −γ(2+
√
2)(1+2x)

2
√
2π

−γ(2+
√
2+2

√
2x)

2
√
2π

−2γ(1+(−1+
√
2)x)√

2π
− 2√

π
γ

1∥c∥2⩽R

πR2 dc −R(2+
√
2)(1+2x)

3π
−R(2+

√
2+2

√
2x)

3π
−4R(1+(−1+

√
2)x)

3π
− 4

√
2R

3π

Table 2: Different values of V (x) for different distributions of the cost c.

lineality spaces. Secondly, we replace the uniform distribution on a polytope by a382

probability distribution on a polyhedron. We call this new polyhedron the weighted383

fiber polyhedron. To link this notion with stochastic programming, we give the defini-384

tion with respect to the dual fibers Dc. We denote by Dc := {λ ∈ Rℓ+ |A⊤λ+ c = 0}385

the admissible dual set for a fixed cost c ∈ −Cone(A), see (3.2).386

Definition 3.3 (Weighted fiber polyhedron). Let Assumption 1 holds. The387

weighted fiber polyhedron E of the bundle (Dc)c∈supp(c) is the Minkowski integral of388

all the fibers at c when c varies according to its probability distribution:389

E := E
[
Dc

]
=

∫
DcP(dc) =

{∫
λ(c)P(dc)

∣∣∣ λ(c) ∈ Dc P - a.s., λ ∈ L1(P,Rm,Rℓ)
}
.390

Note that, when P is a uniform probability measure on a polytope, we recover391

the original fiber polytope. The weighted fiber polyhedron is indeed a polyhedron as,392

by [3, Theorem 1.5], we can replace the Minkowski integral by a finite Minkowski,393

leveraging the normal equivalence of the fibers on the cells of the chamber complex.394

More precisely, let D := {(λ, c) ∈ Rℓ × Rm |A⊤λ + c = 0, λ ⩾ 0} be the dual395

coupling polyhedron, and πλ,cc the orthogonal projection of Rℓ × Rm to Rm. Recall396

that C(D,πλ,cc ) denotes the chamber complex of D along πλ,cc . We have397

(3.7) E =
∑

γ∈C(D,πλ,c
c )

p̌γDčγ .398

where p̌γ := P
[
c ∈ ri(γ)

]
and čγ := E

[
c | c ∈ ri(γ)

]
is the centroid of the cell γ if399

p̌γ > 0 and čγ is an arbitrary point in ri(γ) if p̌γ = 0.400

The weighted fiber polyhedron synthesizes the polyhedral structure of 2SLP with401

stochastic cost c. In particular, the expected cost-to-go function V is, up to an affine402

transformation, equal to the support function of the weighted fiber polyhedron.403

Theorem 3.4. Let Assumption 1 holds. Then, the expected cost-to-go V defined404

in (3.1) is the composition of the support function σE of the weighted fiber polyhedron405

E defined in Definition 3.3 and the affine transformation a : x 7→ Bx− b406

V (x) = σE ◦ a(x) := sup
λ∈E

(Bx− b)⊤λ.407

In particular, the affine regions of V are exactly the maximal cells of the polyhedral408

complex a−1
(
N (E)

)
.409
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The proof consists in applying the interchangeability theorem (see [46, Thm 14.60])410

to the dual formulation of the second stage problem.411

Proof. Under Assumption 1, we have c ∈ −Cone(A⊤) almost surely, thus for412

x ∈ Rn,413

V (x) = E
[
V̂ (x, c)

]
,414

= E
[
sup
λ∈Rℓ

(Bx− b)⊤λ− Iλ∈Dc

]
by (3.2),415

=

∫
−Cone(A⊤)

sup
λ∈Rℓ

(
(Bx− b)⊤λ− Iλ∈Dc

)
P(dc),416

= sup
λ(.)∈L1(P,Rn,Rℓ)

∫
−Cone(A⊤)

(
(Bx− b)⊤λ(q)− Iλ(c)∈Dc

)
P(dc).417

418

Indeed, we can apply [46, Thm 14.60] since the opposite of the function (c, λ) 7→419

(Bx− b)⊤λ− Iλ∈Dc is a normal integrand (see [46, Def 14.27]) and L1(P,Rn,Rℓ) is a420

decomposable space (see [46, Def 14.59]) with the measure P. Thus,421

V (x) = sup
λ(.)∈L1(P,Rn,Rℓ)

(Bx− b)⊤
∫
−Cone(A⊤)

λ(c)P(dc)− Iλ(c)∈Dc P - a.s.,422

= sup
λ(.)∈L1(P,Rn,Rℓ)

∣∣ λ(c)∈Dc P - a.s.

(Bx− b)⊤
∫
−Cone(A⊤)

λ(c)P(dc),423

= sup
λ∈E

(Bx− b)⊤λ.424

425

Remark 3.5 (Links between uniform exact quantization and secondary fan). We426

can retrieve the uniform exact quantization Theorem 3.2, in a dual formulation, from427

Theorem 3.4 and from the decomposition as a Minkowski sum in (3.7). Note that the428

weighted fiber polyhedron is not universal as it determines exactly the affine regions429

of the expected cost-to-go function, for a given cost distribution, and not only a re-430

finement. However, there exists an explicit and universal fan, i.e., independent of the431

distribution of c, which refines N (E). More precisely, we have432

(3.9) − Σ -fan(A⊤) ≼ N (E)433

where Σ -fan(A⊤), is the so-called secondary fan, defined in [13, 5.2.11]. It is the434

normal fan of a well-studied polytope called secondary polytope introduced in [22]435

(see also [13, Section 5]). Note that the secondary polytope is a special case of fiber436

polytope ([3]).437

Further, through technical, yet basic, computations, we also have that438

(3.10) C(P, π) = a−1(−Σ -fan(A⊤)).439

In particular, while providing a more precise characterization of the affine regions,440

(3.9) and (3.10) together with Theorem 3.4 show that the cells of the chamber com-441

plex are universal affine regions. A result we establish in Theorem 3.6 by a more442

elementary way.443

However, to extend these results to the multistage setting, we would need a more444

substantial generalization of fiber polytopes, taking into account nonanticipativity445

constraints and the nested structure of the control problem. We discuss such a gen-446

eralization in [19]. In section 4, we develop a more direct approach to the multistage447

problem, in terms of chamber complexes.448
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3.4. Explicit characterization of expected cost-to-go. As a consequence of449

the exact quantization Theorem 3.2, we obtain explicit representations for the values450

and subdifferentials of the expected cost-to-go function V . We also show that V is451

affine on every cell of the chamber complex for every distribution of the random cost.452

Theorem 3.6 (Characterization of the expected cost-to-go function). Let As-
sumption 1 holds. For x ∈ Rn and c ∈ Rm, we denote

Db−Bx
c := argmax

{
(Bx− b)⊤λ : A⊤λ = −c, λ ⩾ 0

}
,

the set of optimal dual solutions of the second stage problem. Then,

∀σ ∈ C(P, π), ∀x, x′ ∈ ri(σ), ∀c ∈ supp(c), Dσ
c := Db−Bx

c = Db−Bx′

c .

Set453

ασ :=
∑

N∈−Nσ

B⊤λσčN and βσ :=
∑

N∈−Nσ

−b⊤λσčN ,454

where λσc is an element of Dσ
c . Then, we have455

∀σ ∈ C(P, π), ∀x ∈ σ, V (x) = α⊤
σ x+ βσ,(3.11a)456

∀x ∈ Rn, V (x) = Ix∈π(P ) + max
σ∈Cmax(P,π)

α⊤
σ x+ βσ.(3.11b)457

458

459

In particular, for all distributions of c satisfying Assumption 1, V is affine on460

each cell of C(P, π), i.e. the cells of the chamber complex are universal affine regions.461

Moreover, we characterize the subdifferential of the cost-to-go function as462

∂V (x) = Nπ(P )(x) + Conv
{
(ασ)σ∈Cmax(P,π) | x∈σ

}
.463

Proof. By the basis decomposition theorem, see [53], we have that Dψ
c = Dψ′

c for464

all ψ and ψ′ belonging to the same relative interior of a cone of the secondary fan465

Σ -fan(W⊤). In particular, by (3.10), for every x, x′ in the same relative interior of a466

chamber σ, we have Db−Bx
c = Db−Bx′

c .467

For all x ∈ ri(σ) ⊂ π(P ) and all c ∈ supp(c), by Lemma 3.1, we have V̂ (x, c) <
+∞ and then by strong duality, V̂ (x, c) = (Bx − b)⊤λcσ. Then by the exact quanti-
zation result (3.6), for all x ∈ ri(σ),

V (x) =
∑

N∈−Nσ

p̌N V̂ (x, čN ) =
∑

N∈−Nσ

p̌N (Bx− b)⊤λčNσ = α⊤
σ x+ βσ.

Further, as V is lower semicontinuous and convex, we deduce (3.11a).468

To show (3.11b), suppose first that dim
(
π(P )

)
= m. Then, for σ ∈ Cmax(P, π),469

x→ α⊤
σ x+ βσ is a supporting affine function of V which coincide with V on σ whose470

dimension is m. Since
⋃
σ∈Cmax(P,π) σ = supp(C(P, π)) = π(P ), V is piecewise affine471

on the polyhedron π(P ) and equals to +∞ elsewhere. Together with convexity of V ,472

this yields (3.11b). When π(P ) is not full dimensional, we get the same result by473

restraining the ambient space to the affine hull Aff
(
π(P )

)
. Since C(P, π) does not474

depend on c, for all distributions of c satisfying Assumption 1, V is affine on each475

cell of C(P, π). Finally, the subgradient formula follows from (3.11).476
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Remark 3.7. Let Vmax be the collection of affine regions of V . Theorem 3.6477

implies that the chamber complex Cmax(P, π) refines Vmax. However, it does not imply478

that Cmax(P, π) = Vmax. Indeed, if c = 0 P-almost surely, then Vmax = {π(P )}.479

More precisely, for all cost distribution such that Assumption 1 holds, Vmax is the480

collection of maximal elements of a polyhedral complex V such that C(P, π) ≼ V. We481

gave an exact representation of V in Theorem 3.4, showing that V = a−1
(
N (E)

)
.482

4. Exact quantization of the multistage problem. In this section, we show483

that the exact quantization result established above for a general cost distribution484

and deterministic constraints carries over to the case of stochastic constraints with485

finite support and then to multistage programming.486

We denote by πx,yx for the projection from Rn×Rm to Rn defined by πx,yx (x′, y′) =487

x′. The projections πx,y,zx,y , πx,y,zx , πy,zy , π
xt−1,z
xt−1 are defined accordingly. Note that in488

the notation πx,y,zx , x, y and z are part of the notation and not parameters.489

4.1. Propagating chamber complexes through Dynamic Programming.490

We next show that chamber complexes are propagated through dynamic programming491

in a way that is universal with respect to the cost distribution. The following Lemma492

shows how to obtain (a refinement of) the affine regions of the cost-to-go function Vt.493

This refinement depends on the affine regions of Vt+1 and not of the value of Vt+1
5.494

Recall that, for a polyhedron P and a vector ψ, we denote Pψ := argminx∈P ψ
⊤x.495

Let f be a polyhedral function on Rd, with a slight abuse of notation we denote496

epi(f)ψ,1 = argmin(x,z)∈epi(f) ψ
⊤x + z. We denote Flow

(
epi(f)

)
:= {epi(f)ψ,1 | ψ ∈497

Rd} the set of lower faces of epi(f). The collection of projections (on Rd) of lower498

faces of epi(f) is the coarsest polyhedral complex such that f is affine on each of its499

cells (see [13, Chapter 2]). Moreover, we have500

(4.1) πRd

(
epi(f)ψ,1

)
= argmin

x∈Rd

ψ⊤x+ f(x).501

Lemma 4.1. Let U be a polyhedral function on Rm and U := πy,zy

(
Flow

(
epi(U)

))
502

a coarsest polyhedral complex such that U is affine on each element of U . Let ξ =503

(A,B, b) be fixed and Assumption 1 holds. Define, for all x ∈ Rn504

Q(x, y) := U(y) + IAy+Bx⩽b,505

V (x) := E
[
min
y∈Rm

c⊤y +Q(x, y)
]
.506

507

Let V := C(F(P ) ∧ (Rn × U), πx,yx ) ⊂ 2R
n

with P := {(x, y) | Ay +Bx ⩽ b}.508

Then, V ≼ C(epi(Q), πx,y,zx ) and V is a polyhedral function which is affine on each509

element of V.510

Remark 4.2. Thanks to a lift variable, we can rewrite the expected cost-to-go511

function as V (x) = E
[
miny∈Rm,z∈R | (x,y,z)∈epi(Q) c

⊤y + z
]
. A naive approach would512

be to apply directly Theorem 3.2 to this formulation as a 2SLP. However, in the513

multistage setting, epi(Q) depends on the latter random costs ct+1, . . . , cT and appears514

in the contraints. Thus, we cannot hope to obtain a universal polyhedral complex515

directly. We need the more subtle approach of Lemma 4.1 to show that the affine516

regions of V only depends on the affine regions of R, and on the coupling constraint517

polyhedron P and not on epi(Q).518

5In other words, the refinement obtained only depends on the projection of the lower faces of
epi(Vt+1) and not the whole epigraph.
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Figure 7: An illustration of the proof of Lemma 4.1: the epigraph epi(Q) of the
coupling function in blue in the (x, y, z) space, the epigraph of U in yellow in the
(y, z) plane, the affine regions U of U in green on the y axis, the coupling polyhedron
P in orange and brown in the (x, y) plane, the polyhedral complex Q in red and brown
in the (x, y) plane and the chamber complex V in violet on the x axis.

Proof. We have epi(Q) =
(
Rn × epi(U)

)
∩ (P × R) ⊂ Rn+m+1 (see Figure 7).

Since
V (x) = E

[
min

y∈Rm,z∈R
c⊤y + z + I(x,y,z)∈epi(Q)

]
,

by Theorem 3.6 applied to the problem with variables (y, z) and the coupling poly-519

hedron epi(Q), V is a polyhedral function affine on each element of C(epi(Q), πx,y,zx ).520

We now show that V ≼ C(epi(Q), πx,y,zx ). As epi(Q) is the epigraph of a polyhedral521

function, Q := πx,y,zx,y

(
Flow(epi(Q))

)
⊂ 2R

n+m

is a polyhedral complex.522

Let x̌ ∈ πx,y,zx (epi(Q)), using notation of Definition 2.6,523

σepi(Q),πx,y,z
x

(x̌) :=
⋂

F∈F(epi(Q)) s.t. x̌∈πx,y,z
x (F )

πx,y,zx (F ),524

=
⋂

F∈Flow(epi(Q)) s.t. x̌∈πx,y,z
x (F )

πx,y,zx (F ),525

=
⋂

F ′∈Q s.t. x̌∈πx,y
x (F ′)

πx,yx (F ′) =: σQ,πx,y
x

(x̌).526

527

Indeed, as epi(Q) is an epigraph of a polyhedral function, if F ∈ F(epi(Q))528

such that x̌ ∈ πx,y,zx (F ) then there exists G ∈ Flow(epi(Q)) such that G ⊂ F and529

x̌ ∈ πx,y,zx (G), allowing us to go from the first to second equality. The third equality530

is obtained by setting F ′ = πx,y,zx,y (F ). Thus, C(epi(Q), πx,y,zx ) = C(Q, πx,yx ).531

We now show that F(P )∧ (Rn×U) ≼ Q. Let G ∈ F(P )∧
(
Rn×U

)
. There exist532

σ ∈ U and F ∈ F(P ) such that G = F ∩ (Rn×σ). By definition of Flow , there exists533

ψ ∈ Rm such that σ = πy,zy
(
epi(U)ψ,1

)
. We show that G ⊂ πx,y,zx,y (epi(Q)0,ψ,1) ∈ Q.534
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Indeed, let (x, y) ∈ G = F ∩
(
Rn × πy,zy (epi(U)ψ,1)

)
. We have (x, y) ∈ F ⊂ P such535

that y ∈ argminy′∈Rm

{
ψ⊤y′ + U(y′)

}
. Which implies that (x, y) ∈ argmin

{
ψ⊤y′ +536

U(y′) | (x′, y′) ∈ P
}
. This also reads, by (4.1), as (x, y) ∈ πx,y,zx,y (epi(Q)0,ψ,1). Thus,537

G ⊂ πx,y,zx,y (epi(Q)0,ψ,1) ∈ Q leading to F(P )∧(Rn×U) ≼ Q. Finally, by monotonicity,538

Lemma 2.7 ends the proof.539

Remark 4.3. In Lemma 4.1, the complex V is independent of the distribution of540

c. However, for special choices of c, V might be affine on each cell of a coarser complex541

than V. For instance, if U = 0 and c ≡ 0, we have that V = Iπx,y
x (P ), V is affine on542

πx,yx (P ). Nevertheless, V = C(P, πx,yx ) is generally finer than F
(
πx,yx (P )

)
. Note that543

the chambers of V can be enumerated thanks to the algorithm described in [10] (where544

chambers are called validity domains) or more generally by constructing the secondary545

polytope (see [2]).546

4.2. Exact quantization of MSLP. We next show that the multistage pro-547

gram with arbitrary cost distribution is equivalent to a multistage program with548

independent, finitely distributed, cost distributions. Further, for all step t, there exist549

affine regions, independent of the distributions of costs, where Vt is affine. Assump-550

tion 1 is naturally extended to the multistage setting as follows551

Assumption 2. The sequence (ct, ξt)2⩽t⩽T is independent.6 Further, for each552

t ∈ {2, . . . , T}, ξt = (At,Bt, bt) is finitely supported, and ct ∈ L1(Ω,A,P;Rnt) is553

integrable with ct ∈ −Cone(A⊤
t ) almost surely.554

Note that Assumption 2 does not require independence between ct and ξt. Let555

t ∈ [T ]. For any ξ := (A,B, b) ∈ supp(ξt) we define the coupling polyhedron556

Pt(ξ) := {(xt−1, xt) ∈ Rnt−1 × Rnt | Axt +Bxt−1 ⩽ b},557

and consider, for xt−1 ∈ Rnt−1 ,558

(4.3) Ṽt(xt−1|ξ) := E
[

min
xt∈Rnt

c⊤t xt + Vt+1(xt) + IAxt+Bxt−1⩽b | ξt = ξ
]
.559

Then, the cost-to-go function Vt is obtained by560

(4.4) Vt(xt−1) =
∑

ξ∈supp(ξt)

P
[
ξt = ξ

]
Ṽt(xt−1 | ξ).561

The next two theorems extend the quantization results of Theorem 3.2 to the562

multistage settings.563

Theorem 4.4 (Affine regions independent of the cost). Assume that (ξt)t∈[T ]564

is a sequence of independent, finitely supported, random variables. We define by565

induction PT+1 := {RnT } and for t ∈ {2, . . . , T}566

Pt,ξ := C(Rnt × Pt+1 ∧ F
(
Pt(ξ)

)
, πxt−1,xt
xt−1

),(4.5a)567

Pt :=
∧

ξ∈supp ξt

Pt,ξ.568

569

Then, for all costs distributions (ct)2⩽t⩽T such that (ct, ξt)2⩽t⩽T satisfies Assump-570

tion 2 and all t ∈ {2, . . . , T}, we have supp(Pt) = dom(Vt), and Vt is polyhedral and571

affine on each cell of Pt.572

6The results can be adapted to non-independent ξt as long as ct is independent of (cτ )τ<t

conditionally on (ξτ⩽t).
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Remark 4.5. The definition of Pt,ξ as the induction equation (4.5a) is the same573

as the definition of V in Lemma 4.1 and illustrated in Figure 7, by taking U = Pt+1,574

P = Pt(ξ), x = xt−1 and y = xt (see also Figure 9 for a particular 3SLP example).575

Proof. We set for all t ∈ {2, . . . , T + 1}, Vt := π
xt−1,z
xt−1

(
Flow

(
epi(Vt)

))
the affine576

regions of Vt. As VT+1 ≡ 0 is polyhedral and affine on RnT , we have PT+1 = VT+1.577

Assume now that for t ∈ {2, . . . , T}, Vt+1 is polyhedral and Pt+1 refines Vt+1 (i.e.,578

Vt+1 is affine on each cell σ ∈ Pt+1).579

By Lemma 4.1, Ṽt(·|ξ), defined in (4.3), is affine on each cell of C(Rnt × Vt+1 ∧580

F
(
Pt(ξ)

)
, π
xt−1,xt
xt−1 ) which is refined by Pt,ξ = C(Rnt × Pt+1 ∧ F

(
Pt(ξ)

)
, π
xt−1,xt
xt−1 ) by581

induction hypothesis and Lemma 2.7. Thus, by (4.4), Vt is affine on each cell of Pt. In582

particular, Vt is polyhedral and Pt :=
∧
ξ∈supp ξt

Pt,ξ refines Vt. Backward induction583

ends the proof.584

By Lemma 4.1, we have that Pt,ξ ≼ C(epi
(
Qξt

)
, π
xt−1,xt,z
xt−1 ) where Qξt (xt−1, xt) :=585

Vt+1(xt) + IAxt+Bxt−1⩽bt . In particular, consider σ ∈ Pt,ξ, then for all xt−1 ∈586

ri(σ), all fibers epi(Qξt )xt−1
are normally equivalent. We can then define Nt,ξ,σ :=587

N (epi(Qξt )xt−1
) for an arbitrary xt−1 ∈ ri(σ).588

The next result shows that we can replace the MSLP problem (1.2) by an equiv-589

alent problem with a discrete cost distribution.590

Theorem 4.6 (Exact quantization of the cost distribution, Multistage case). As-591

sume that (ξt)t∈[T ] is a sequence of independent, finitely supported, random variables.592

Then, for all costs distributions such that (ct, ξt)2⩽t⩽T satisfies Assumption 2, for all593

t ∈ [T ], all xt−1 ∈ Rnt−1 and all ξ ∈ supp(ξt), we have a quantized version of (4.3):594

Ṽt(xt−1|ξ) =
∑

N∈Nt,ξ

p̌t,N |ξ min
xt∈Rnt

{
č⊤t,N |ξxt + Vt+1(xt) + IAxt+Bxt−1⩽b

}
.595

where Nt,ξ :=
∧
σ∈Pt,ξ

−Nt,ξ,σ and for all ξ ∈ supp(ξt) and N ∈ Nt,ξ we denote596

p̌t,N |ξ := P
[
ct ∈ riN | ξt = ξ

]
,597

čt,N |ξ :=

{
E
[
ct | ct ∈ riN, ξt = ξ

]
if P

[
ξt = ξ,x ∈ riN

]
̸= 0

0 otherwise
.598

599
600

Proof. Since Ṽt(xt−1|ξ) = E
[
minxt∈Rnt ,z∈R c⊤xt + z + I(xt−1,xt,z)∈epi(Qξ

t )

]
and601

Pt,ξ refines C(epi
(
Qξt

)
, π
xt−1,xt,z
xt−1 ), by applying Theorem 3.2 with variables (xt, z)602

and the coupling constraints polyhedron epi(Qξt ), we deduce that the coefficients603

(p̌t,N |ξ)N∈Nt,ξ
and (čt,N |ξ)N∈Nt,ξ

satisfy604

Ṽt(xt−1|ξ) =
∑

N∈Nt,ξ

p̌t,N |ξ min
xt∈Rnt ,z∈R

{
č⊤t,N |ξxt + z + I(xt−1,xt,z)∈epi(Qξ

t )

}
.605

as the deterministic coefficient before z is equal to its conditional expectation.606

In particular, the MSLP problem is equivalent to a finitely supported MSLP as607

shown in the following result.608

For t0 ∈ [T−1], we construct the scenario tree Tt0 as follows. A node of depth t−t0609

of Tt0 is labeled by a sequence (Nτ , ξτ )t0<τ⩽t where Nτ ∈ Nτ,ξτ and ξτ ∈ supp(ξτ ).610

In this way, a node of depth t− t0 of Tt0 keeps track of the sequence of realizations of611

the random variables ξτ for times τ between t0 and t, and of a selection of cones in612
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Figure 8: The coupling constraint polyhedron P3 and V3 for two distributions of c3.

Nt,ξt at the same times. Note that, by the independence assumption, all the subtrees613

of Tt0 , starting from a node of depth t−t0 are the same as Tt0+t. We denote by lv(Tt0)614

the set of leaves of Tt0 .615

Corollary 4.7 (Equivalent finite tree problem). Define the quantized proba-616

bility cost cν := čt,Nt|ξt and probability pν :=
∏
t0<τ⩽t

pξτ p̌τ,Nτ |ξτ , for all nodes617

ν = (Nτ , ξτ )t0<τ⩽t. Then, the cost-to-go functions associated with (1.1) are given618

by619

Vt0(x0) = min
(xν)ν∈Tt0

∑
ν∈Tt0

pνc
⊤
ν xν620

s.t. Axµ +Bxν ⩽ b ∀ν ∈ Tt0\ lv(Tt0),∀µ ≽ ν ,621622

for all 2 ⩽ t0 ⩽ T − 1. Here, x0 is the value of x at the root node of Tt0 , and the623

notation ∀µ = (ν,N,A,B, b) ≽ ν indicates that µ ranges over the set of children of ν.624

4.3. Illustrative example in 3SLP. We now illustrate the exact quantization625

result by considering the following three-stage stochastic linear problem:626

min
x1∈R | x1∈P1

c1x1 + E

[
min

x2∈R | (x1,x2)∈P2

c2x2 + E
[

min
x3∈R | (x2,x3)∈P3

c3x3

]
︸ ︷︷ ︸

V3(x2)

]

︸ ︷︷ ︸
V2(x1)

.627

with P2 = {(x1, x2) ∈ R2
∣∣ − 0.5 ⩽ x2 ⩽ 1.3, 1 ⩽ x1 − x2 ⩽ 3} and P3 = {(x2, x3) ∈628

R2
∣∣ ∥(x2, x3)∥1 ⩽ 2}. We compute V3 (see Figure 8) and the chamber complex P2629

composed of the cells {−1}, [−1, 0], {0}, [0, 1] and {1}.630

Thanks to P2 and the coupling polyhedron P2, we compute the chamber complex631

P1 whose chambers are {0.5},[0.5, 1],{1},[1, 2],{2},[2, 2.5],{2.5},[2.5, 3],{3},[3, 4] and632

{4} (see Figure 9). We deduce the differents normal fans, for each chambers of P1633

(see Figures 10 and 11).634
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Figure 9: The coupling constraint polyhedron P2, the chamber complexes P2 and P1

Figure 10: The fiber E2,x1
= epi(V3)∩(P2,x1

×R) in blue, of the epigraph E2 := epi(Q2)
where Q2 is the polyhedral function Q2 : (x1, x2) 7→ V3(x2) + I(x1,x2)∈P2

and P2,x1

is in brown, its normal fan N (E2,x1
) in green for c3 following the standard normal

distribution and different values of x1.

5. Complexity. Hanasusanto, Kuhn andWiesemann showed in [26] that 2-stage635

stochastic programming is ♯P-hard, by reducing the computation of the volume of a636

polytope to the resolution of a 2-stage stochastic program. Nevertheless, we show637

that for a fixed dimension of the recourse space, 2-stage programming is polynomial.638

Therefore, the status of 2-stage programming seems somehow comparable to the one639

of the computation of the volume of a polytope – which is also both ♯P-hard and640

polynomial when the dimension is fixed (see [33] or [23, 3.1.1]). Another example of641

♯P-hard problems that are fixed dimension polynomial is the problem of counting the642

integer points in a given polytope (see [34]) We shall see that a similar result holds643

for multistage stochastic linear programming.644

We first give a summary of our method. A naive approach would be to use directly645

the exact quantization result Theorem 3.2, for every x. However, even in the 2-stage646

case, the latter yields a linear program of an exponential size when only the recourse647

dimension m is fixed. Indeed, the size of the quantized linear program, (2SLP ) is648

polynomial only when both n and m are fixed. This is because
∧
σ∈C(P,π) −Nσ can649

have, by McMullen’s and Stanley’s upper bound theorems ([39, 52]), an exponential650

size in n and m, and these bounds are tight. Hence, to handle the case in which only651

the recourse dimension m is fixed, we need additional ideas. We use the quantization652
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−c2

(a) x1 ∈ [0.5, 1]
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−c2

(b) x1 ∈ [1, 3]

••
−c2

(c) x1 ∈ [3, 4]

Figure 11: The normal fan N (E2,x1) in green, and its intersection with {−1} × R in
orange, for c3 following the standard normal distribution and different values of x1.

result, Theorem 3.2 only for a fixed x, observing that when m is fixed, N (Px) has a653

polynomial size. We thus have a polynomial time oracle that gives the values V (x)654

by Theorem 3.2 and a subgradient g ∈ ∂V (x). Then, we rely on the theory of linear655

programming with oracle [24], working in the Turing model of computation (a.k.a. bit656

model). In particular, all the computations are carried out with rational numbers. We657

now provide the proofs. subsection 5.1 deals with exact models whereas subsection 5.2658

allows arbitrary probability distributions thanks to the use of approximate oracles.659

5.1. Multistage programming with exact oracles. Recall that a polyhe-660

dron can be given in two manners. The “H-representation” provides an external661

description of the polyhedron, as the intersection of finitely many half-spaces. The662

“V -representation” provides an internal representation, writing the polyhedron as a663

Minkowski sum of a polytope (given as the convex hull of finitely many points) and664

of a polyhedral cone (generated by finitely many vectors).665

We say that a polyhedron is rational if the inequalities in its H-representation666

are rational or, equivalently, the generators of its V -representation have rational coef-667

ficients. We shall say that a (convex) polyhedral function V is rational if its epigraph668

is a rational polyhedron.669

Recall that, in the Turing model, the size (or encoding length see [24, 1.3]) of an670

integer k ∈ Z is ⟨k⟩ := 1 + ⌈log2(|k| + 1)⌉; the size of a rational r = p
q ∈ Q with p671

and q coprime integers, is ⟨r⟩ := ⟨p⟩+ ⟨q⟩. The size of a rational matrix or a vector,672

still denoted by ⟨·⟩, is the sum of the sizes of its entries. The size of an inequality673

α⊤x ⩽ β is ⟨α⟩ + ⟨β⟩. The size of a H-representation of a polyhedron is the sum of674

the sizes of its inequalities and the size of a V -representation of a polyhedron is the675

sum of the sizes of its generators.676

If the dimension of the ambient space is fixed, one can pass from one representation677

to the other one in polynomial time. Indeed, the double description algorithm allows678

one to get a V -representation from a H-representation, see the discussion at the end679

of section 3.1 in [21], and use McMullen’s upper bound theorem ([39] and [24, 6.2.4])680

to show that the computation time is polynomially bounded in the size of the H-681

representation. A fortiori, the size of the V -representation is polynomially bounded682

in the size of the H-representation. Dually, the same method allows one to obtain683

a H-representation from a V -representation. Hence, in the sequel, we shall use the684

term size of a polyhedron for the size of a V or H-representation: when dealing with685

polynomial-time complexity results in fixed dimension, whichever representation is686

used is irrelevant. In particular, we define the size ⟨N⟩ of a rational cone N as the687

size of a H or V representation of N .688

We first observe that the size of the scenario tree arising in the exact quantization689
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result becomes polynomial when suitable dimensions are fixed.690

Proposition 5.1. Let t ∈ {2, . . . , T}, and suppose that the dimensions nt, . . . , nT691

and the cardinals ♯(supp ξt), . . . , ♯(supp ξT ) are fixed. Let T be the scenario tree con-692

structed in Corollary 4.7. Then, the subtree of T rooted at an arbitrary node of depth693

t can be computed in polynomial time in
∑T
s=t

∑
ξ∈supp(ξs)

⟨ξ⟩.694

Proof. Recall that a node of depth t of T is labeled by a sequence (Nτ , ξτ )t0<τ⩽t,695

where Nτ describes Nt,ξ =
∧
σ∈Pt,ξ

−Nt,ξ,σ, where Pt,ξ is defined in (4.5a) by Pt,ξ :=696

C(Rnt × Pt+1 ∧ F
(
Pt(ξ)

)
, π
xt−1,xt
xt−1 ), and Pt+1 =

∧
ξ∈supp ξt+1

Pt+1,ξ.697

Assume by induction that Pt+1 and the subtrees of T rooted at a node of depth698

t + 1 can be computed in polynomial time in
∑T
s=t+1

∑
ξ∈supp(ξs)

⟨ξ⟩. Then ♯Pt+1 is699

polynomial in
∑T
s=t+1

∑
ξ∈supp(ξs)

⟨ξ⟩. It is well known that (see [55, 3.9]) the number700

of chambers of a chamber complex C(Q, π) is polynomial in ⟨Q⟩ when both dimensions701

are fixed. Thus, for each ξ ∈ supp(ξt) ♯Pt,ξ is polynomial in ⟨ξ⟩+ ⟨Pt+1⟩ and thus in702 ∑T
s=t

∑
ξ∈supp(ξs)

⟨ξ⟩ and we can compute the (maximal) chambers of the complexes703

Pt,ξ thanks to the algorithm in [10, 3.2] in polynomial time.704

For each chamber σ of Pt,ξ, thanks to a linear program, we find x ∈ ri(ξ) in705

polynomial time. The number of cones in Nt,ξ,σ = N (Pt(ξ)x) is equal to the number706

of faces of the fiber Pt(ξ)x which is polynomially bounded in the number of constraints707

q ⩽ ⟨ξ⟩ when the dimension nt is fixed. Indeed, the McMullen upper-bound theorem708

[39], in its dual version, guarantees that a polytope of dimension m with f facets has709

O(f⌊m/2⌋) faces, see [47]. Thus, ♯Nt,ξ,σ is polynomial in ⟨ξt⟩. By taking the common710

refinements, we can construct, in polynomial time, the nodes of T of depth t.711

We recall the theory of linear programming with oracle applies to the class of712

“well described” polyhedra which are rational polyhedra with an a priori bound on713

the bit-sizes of the inequalities defining their facets, we refer the reader to [24] for a714

more detailed discussion of the notions (oracles) and results used here.715

Definition 5.2 (first-order oracle). Let f be a rational polyhedral function. We716

say that f admits a polynomial time (exact) first-order oracle, if there exists an oracle717

that takes as input a vector x and either returns a hyperplane separating x from718

dom(f) if x /∈ dom(f) or returns f(x) and g ∈ ∂V (x) if x ∈ dom(f), in polynomial719

time in ⟨x⟩.720

Lemma 5.3. Let Q ⊂ Rd be a polyhedron, c ∈ Rd a cost vector and f be a polyhe-721

dral function given by a first-order oracle. Futhermore, assume epi(f) and Q are well722

described. Then, the problem minx∈Q c⊤x + f(x) can be solved in oracle-polynomial723

time in ⟨c⟩+ ⟨epi(f)⟩+ ⟨Q⟩.724

Proof. The proof follows from the analysis of the ellipsoid method by Grötschel,725

Lovász and Schrijver. More precisely, the case where dom(f) = Rd is tackled in726

Theorem 6.5.19 in [24] which shows that minimizing a polyhedral function with a727

well described epigraph over Rd can be done in polynomial time. If f has a general728

domain, we can write f = f̃ + Idom f where f̃ is a polyhedral function with a well729

described epigraph and such that dom f̃ = Rd. E.g., we may obtain such an f̃ by730

considering the inf-convolution of f with the polyhedral function L∥ ·∥∞ where L > 0731

is the Lipschitz constant of the restriction of f to its domain, with respect to the732

sup-norm, meaning that |f(x)− f(y)| ⩽ L∥x− y∥∞ for all x, y ∈ dom f and that L is733

the smallest constant with this property. Then, it is immediate to see that f̃ coincides734

with f on dom f and that it is everywhere finite. Moreover, f̃ is still well-described.735
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Then, noting that epi(f) = epi(f̃)∩(dom(f)×R), we can adapt the proof of Theorem736

6.5.19, ibid., using Exercise 6.5.18 in this reference, which states that the intersection737

of well described polyhedra is well described.738

We do not require the distribution of the cost c to be described extensively. We739

only need to assume the existence of the following oracle.740

Definition 5.4 (cone-valuation oracle). Let c ∈ L1(Ω,A,P,Rm) be an integrable741

cost distribution such that, for every rational cone N , the quantized probability p̌N and742

quantized cost čN are rational. We say that c admits a polynomial time (exact) cone-743

valuation oracle, if there exists an oracle which takes as input a rational polyhedral744

cone N and returns p̌N and čN in polynomial time in ⟨N⟩.745

Theorem 5.5 (Cone valuation to first-order oracle). Consider the value func-746

tions of MSLP defined in (1.2) . Assume that T, n2, . . . , nT , ♯(supp ξ2), · · · ,♯(supp ξT )747

are fixed integers, and that (ct, ξt)2⩽t⩽T satisfies Assumption 2. Assume in addi-748

tion that, every vector ξ ∈ supp(ξt) has rational entries and that the probabilities749

pt,ξ := P
[
ξt = ξ

]
are rational numbers. Assume finally that every random variable ct750

conditionally to {ξt = ξ}, denoted by ct,ξ, admits a polynomial-time cone-valuation751

oracle (see Definition 5.4).752

Then, for all t ⩾ 2, Vt admits a polynomial time first-order oracle.753

Proof. We start with the 2-stage case with deterministic constraints. We recall our754

notation V (x) := E
[
miny∈Rm c⊤y + IAy+Bx⩽b

]
. Let x ∈ Rn be an input vector. We755

first check if x ∈ π(P ) = dom(V ). By solving the dual of miny∈Rm{ 0 |Ay ⩽ b−Bx},756

we either find an unbounded ray generated by λ ∈ Rq such that λ ⩾ 0, λ⊤A = 0 and757

λ⊤(b−Bx) < 0 or a y ∈ Rm such that Ay ⩽ b−Bx, so that x ∈ π(P ). In the former758

case we have x /∈ π(P ), and we get a cut {x′ ∈ Rn |λ⊤Bx′ = λ⊤b+λ⊤Ax
2 }, separating759

π(P ) = dom(V ) from x.760

So, we now assume that x ∈ π(P ), i.e., V (x) < +∞. We next show that we761

can compute V (x) and a subgradient α ∈ ∂V (x) in polynomial time. Indeed, the762

McMullen upper-bound theorem [39], in its dual version, guarantees that a polytope763

of dimension m with f facets has O(f⌊m/2⌋) faces, see [47]. Since the number of764

cones in N (Px) is equal to the number of faces of Px which is polynomially bounded765

in the number of constraints q ⩽ ⟨ξ⟩, ♯N (Px) is polynomial in ⟨ξ⟩. Thus, since c is766

given by a cone valuation oracle, we can compute in polynomial time the collection767

of all quantized costs and probabilities čN and p̌N , indexed by N ∈ −N (Px). Then,768

by Theorem 3.2, we can compute V (x) by solving a linear program for each cone769

N ∈ −N (Px). Similarly, Theorem 3.6 allows us to compute a subgradient α ∈ ∂V (x).770

All these operations take a polynomial time.771

The case of finitely supported stochastic constraints reduces to the case of deter-772

ministic constraints dealt with above, using dom(V ) = ∩ξ∈supp ξπ(P (ξ)) and V (x) =773 ∑
ξ∈supp ξ pξṼ (x|ξ) where Ṽ (x|ξ) := E

[
V̂ (x, c, ξ) | ξ = ξ

]
.774

We finally deal with the multistage case in a similar way, using the quantization775

result Corollary 4.7 in extensive form. Applying Proposition 5.1, the quantized costs776

and probabilities arising there can be computed by a polynomial number of calls to777

the cone-valuation oracle. This provides a first order oracle for the expected cost-to-go778

function Vt.779

We now refine the definition of cone-valuation oracle, to take into account sit-780

uations in which the distribution of the random cost c is specified by a parametric781

model. We shall say that such a distribution admits a polynomial-time parametric782

cone-valuation oracle if there is an oracle that takes as input the parameters of the783
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distribution, together with a rational cone N , and outputs the quantized probability784

p̌N and cost čN . Especially, we consider the following situations:785

1. Deterministic distribution equal to a rational cost c. We set ⟨c⟩ := ⟨c⟩786

2. Exponential distribution on a rational cone K with rational parameter θ. We787

set ⟨c⟩ := ⟨K⟩+ ⟨θ⟩788

3. Uniform distribution on a rational polyhedron Q such that Aff(Q) = {y ∈789

Rm | ∀j ∈ J ⊂ [m], yj = qj ∈ Q} where J is a subset of [m] and qj are790

rational numbers (in particular, Q is full dimensional when J = ∅). We set:791

⟨c⟩ = ⟨Q⟩792

4. Mixtures of the above distributions, i.e., convex combination with rational793

coefficients (λk)k∈[l] of distributions of random variables (ck)k∈[l] satisfying794

1. 2. or 3. Then, we set ⟨c⟩ =
∑l
k=1⟨ck⟩+ ⟨λk⟩.795

Theorem 5.6. Assume that the dimension m is fixed, and that c is distributed796

according to any of the above laws (deterministic, exponential, uniform, or mixture).797

Then, the random cost c admits a polynomial-time parametric cone-valuation oracle.798

799

Proof. 1. Case of a deterministic distribution. We first check whether c ∈ ri(N),800

which can be done in polynomial time, see section 6.5 of [24]. Then, if c ∈ ri(N), we801

set čN = c and p̌N = 1 otherwise čN = 0 and p̌N = 0.802

2. Case of an exponential distribution. Since the dimension is fixed, for every803

polyhedron R, we can triangulate R ∩ supp(c) and partition it into (relatively open)804

simplices and simplicial cones (Sk)k∈[l], and by Stanley upper bound theorem, the805

size l of the triangulation is polynomial in ⟨R⟩. By using the exponential valuation806

of a simplicial cone in Table 1 see also [1, (8.2.2)] or [9] , we compute in polynomial807

time p̌R =
∑l
k=1 p̌Sk

and čR =
∑l
k=1 p̌Sk

čSk
/p̌R if p̌R = 0 and čR = 0 otherwise.808

3. Case of a uniform distribution. After triangulating (as in the case of an809

exponential distribution), we may suppose that the support of the distribution is a810

simplex S, so that Q = S. If this simplex S is full dimensional, then its volume is811

given by a determinantal expression, and so, it is rational (see e.g., [23] 3.1). Then,812

the formulas of Table 1 yield the result. If this simplex is not full dimensional, we813

have Aff(S) = {y ∈ Rm | ∀j ∈ J, yj = qj}, a similar formula holds, ignoring the814

coordinates of y whose indices are in the set J .815

4. Case of mixtures of distributions. Trivial reduction to the previous cases.816

Remark 5.7. The conclusion of Theorem 5.6 does not carry over to the uniform817

distribution on a general polytope of dimension k < n. The condition that Aff(Q) =818

{y ∈ Rm | ∀j ∈ J, yj = qj} ensures that the orthogonal projection on Aff(Q) preserves819

rationality, which entails that the k-dimensional volume of Q is a rational number. In820

general, this volume is obtained by applying the Cayley Menger determinant formula821

(see for example [23, 3.6.1]), and it belongs to a quadratic extension of the field of822

rational numbers. For example, if ∆d is the canonical simplex {λ ∈ Rd+1
+ |

∑d+1
i=1 λi =823

1} then Vol(∆d) =
√
d+1
d! .824

For the Gaussian distribution, čS and p̌S can be determined in terms of solid825

angles (see [45]) arising in Table 1. These coefficients are generally involving the826

number π and Euler’s Γ function, and thus they are irrational.827

Corollary 5.8 (MSLP is polynomial for fixed dimensions). Consider the prob-828

lem (1.1) . Assume that T, n2, . . . , nT , ♯(supp ξ2), · · · ,♯(supp ξT ) are fixed inte-829

gers, that (ct, ξt)2⩽t⩽T satisfies Assumption 2. Suppose in addition that, for all830

ξ ∈ supp(ξt), pt,ξ := P
[
ξt = ξ

]
and ξ are rational and that the random variable831
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ct conditionally to {ξt = ξ}, denoted by ct,ξ, is of the type considered in Theorem 5.6.832

Then, Problem (1.1) can be solved in a time that is polynomial in the input size833

⟨c1⟩+ ⟨ξ1⟩+
∑T
t=2

∑
ξ∈supp(ξt)

(⟨ct,ξ⟩+ ⟨ξ⟩+ ⟨pt,ξ⟩).834

Proof. We first show by backward induction that the epigraph epi(V2) is well835

described. The dynamic programming equation (1.2) allows us to compute a H-836

representation of epi(Vt) from a H-representation of epi(Vt+1). Indeed, by Theo-837

rem 4.6, we have838

Vt(xt−1) =
∑

ξ∈supp(ξt)

pt,ξ
∑

N∈Nt,ξ

p̌t,N |ξ min
xt∈Rnt

Qt,N |ξ(xt, xt−1) , with839

Qt,N |ξ(xt, xt−1) := č⊤t,N |ξxt + Vt+1(xt) + I(xt,xt−1)∈Pt(ξ) .840
841

We then have842

epi(Qt,N |ξ) =
(
epi(xt 7→ č⊤t,N |ξxt) + epi(Vt+1)

)
∩ (Pt(ξ)× R),843

epi(Vt) =
∑

ξ∈supp(ξt)

pt,ξ
∑

N∈Nt,ξ

p̌t,N |ξ π
xt−1,xt,z
xt−1,z

(
epi(Qt,N |ξ)

)
,844

845

recalling that π
xt−1,xt,z
xt−1,z denotes the projection mapping (xt−1, xt, z) 7→ (xt−1, z). Well846

described polyhedra are stable under the operations of projection, intersection, and847

Minkowski sum, see in particular [24, 6.5.18]. It follows that epi(Vt) is well described.848

Then, the corollary follows from Lemma 5.3, Theorem 5.5 and Theorem 5.6.849

5.2. Multistage programming with approximate oracles. We finally con-850

sider the situation in which the law of the cost distribution is only known approxi-851

mately. Hence, we relax the notion of cone-valuation oracle, as follows.852

Definition 5.9 (Weak cone-valuation oracle). Let c ∈ L(Ω,A,P,Rm) be an inte-853

grable cost distribution. We say that c admits a polynomial time weak cone-valuation854

oracle, if there exists an oracle which takes as input a rational polyhedral cone N to-855

gether with a rational number ε > 0, and returns a rational number p̃N and a rational856

vector c̃N such that |p̃N − p̌N | ⩽ ε and ∥c̃N − čN∥ ⩽ ε, in a time that is polynomial857

in ⟨N⟩+ ⟨ε⟩.858

Definition 5.10 (Weak first-order oracle). Let f be a rational polyhedral func-859

tion. We say that f admits a polynomial time weak first-order oracle, if there exists an860

oracle that takes as input a vector x and either returns a hyperplane separating x from861

dom(f) if x /∈ dom(f) or returns a scalar f̃ and a vector g̃ such that |f̃ − f(x)| ⩽ ε862

and d
(
g̃, ∂f(x)

)
⩽ ε if x ∈ dom(f), in a time which is polynomial in ⟨x⟩+ ⟨ε⟩.863

Remark 5.11. In our definition of weak first order oracle, we require that fea-864

sibility (x ∈ dom(f)) be tested exactly, whereas the value and a subgradient of the865

function are only given approximately. This is suitable to the present setting, in866

which the main difficulty resides in the approximation of the function (which may867

take irrational values for relevant cost distributions).868

We now rely on the theory of linear programming with weak separation oracles devel-869

oped in [24]. Let C ⊂ Rd be convex set, for ε > 0, let S(C, ε) := {x ∈ Rd | ∥x−y∥ ⩽ ε}870

and S(C,−ε) := {x ∈ Rd | B(x, ε) ⊂ C} where B(x, ε) denotes the Euclidean ball871

centered at x of radius ε. A weak separation oracle for a convex set C ⊂ Rd takes872

as argument a vector x ∈ Rd and a rational number ε > 0, and either asserts that873

x ∈ S(C, ε) or returns a rational vector γ ∈ Rd, of norm one, and a rational scalar δ,874

such that γ⊤y ⩽ γ⊤x+ ε for all y ∈ S(C,−ε).875
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Theorem 5.12 (Weak cone valuation to weak first-order oracle). Consider876

the value functions of problem (1.1) defined in (1.2) . Assume that T, n2, . . . , nT ,877

♯(supp ξ2), · · · ,♯(supp ξT ) are fixed integers, and that (ct, ξt)2⩽t⩽T satisfies Assump-878

tion 2. Assume in addition that, every vector ξ ∈ supp(ξt) has rational entries and879

that the probabilities pt,ξ := P
[
ξt = ξ

]
are rational numbers. Assume finally that the880

diameters of domVt, for t ⩾ 2, are bounded by a rational constant R, and that every881

random variable ct conditionally to {ξt = ξ}, denoted by ct,ξ, admits a polynomial-882

time weak cone-valuation oracle (see Definition 5.4).883

Then, for all t ⩾ 2, Vt admits a polynomial time weak first-order oracle.884

Proof. The proof is similar to the one of Theorem 5.5. The main difference is that885

we need an a priori bound R on the diameter of domVt, so that if d(g̃, ∂Vt(x)) ⩽ ε,886

then, using Cauchy-Schwarz inequality, Vt(y)− Vt(x) ⩾ g̃ · (y − x)− εR holds for all887

y ∈ domVt. Together with and approximation of Vt(x), this allows us to get a weak888

separation oracle for the epigraph of Vt.889

Corollary 5.13 (Approximate (MSLP) is polynomial-time for fixed recourse890

dimension m). Consider Problem (1.1). Let T, n2, . . . , nT , ♯(supp ξ2), · · · ,♯(supp ξT )891

be fixed integers. Assume finally that the diameters of domVt, for t ⩾ 2, are bounded892

by R ∈ Q, and that for all ξ ∈ supp(ξt), the random variable ct conditionally to893

{ξt = ξ}, denoted by ct,ξ, admits a polynomial-time weak cone-valuation oracle.894

Then, there exists an algorithm that either asserts that Problem (1.1) is infeasible895

or find a feasible solution x∗ whose cost does not exceed the cost of an optimal solution896

by more than ε, in polynomial-time in ⟨ε⟩ + ⟨c1⟩ + ⟨ξ1⟩ +
∑T
t=2

∑
ξ∈supp(ξt)

(⟨ct,ξ⟩ +897

⟨ξ⟩+ ⟨pt,ξ⟩) + ⟨R⟩. In particular, its complexity is polynomial in log(1/ε).898

Proof. This follows from Theorem 5.12, using the result analogous to Lemma 5.3899

for weak separation oracles, see [24, 6.5.19].900

Finally, we show that every absolutely continuous cost distribution, with a suitable901

density function, admits a polynomial-time weak cone-valuation oracle.902

Definition 5.14. A density function f : Rn → R+ is combinatorially tight if:903

1. there is a polynomial time algorithm which, given a rational number ε > 0,904

returns a rational number r > 0 such that
∫
∥x∥>r f(x)dx ⩽ ε.905

2. there is a polynomial time algorithm, which given a rational vector x ∈ Rn,906

and a rational number ε > 0, returns an ε approximation of f(x).907

The terminology is inspired by the notion of tightness from measure theory (analogous908

to condition 1 in Definition 5.14).909

We shall need a classical result on the numerical approximation of multidimen-910

sional integrals. The total variation in the sense of Hardy and Krause, ∥f∥BVHK, of a911

function f on a n dimensional hypercube is defined in [11, Def. p.352]). In particular,912

if f is of regularity class Cn, ∥f∥BVHK is finite. The error made when approximating913

the integral of a function of n variables by its Riemann sum taken on a regular grid914

with k points is bounded by (n∥f∥BVHK)/k
1/n, see [11, p.352].915

Proposition 5.15. Suppose that a cost distribution c admits a density function916

f : Rn → R+, that is such that the function (1+∥·∥)f is combinatorially tight and that917

it has a finite total variation in the sense of Hardy and Krause, bounded by an a priori918

constant. Suppose that the dimension n is fixed. Then, c admits a polynomial-time919

weak cone valuation oracle.920

Proof. Given a rational cone N , we need to approximate the integrals
∫
N
f(c)dc921

and
∫
N
cf(c)dc, up to the precision ε. Using the tightness condition, it suffices to922
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approximate the integrals of the same functions restricted to the domain Nr := N ∩923

B∞(0, r), where B∞(0, r) denotes the sup-norm ball of radius r, and the encoding924

length of r is polynomially bounded in the encoding length of ε. We only discuss925

the approximation of
∫
Nr
cf(c)dc (the case of

∫
Nr
f(c)dc being simpler). We denote926

by c̃Nr
the approximation of

∫
Nr
cf(c)dc provided by taking the Riemann sum of the927

function c 7→ cf(c) over the grid ([−r, r))n ∩ ((r/M)Z)n, which has (2M)r points.928

Then, setting g := (1 + ∥ · ∥)f , it follows from [11, Th. p 352] recalled above that929

∥
∫
Nr
cf(c)dc− c̃Nr

∥ ⩽ n∥g∥BVHK/(2M). Hence, for a fixed dimension n, we can get930

an ε approximation of
∫
N
cf(c)dc in a time polynomial in the encoding length of ε.931

Remark 5.16. Proposition 5.15 and Corollary 5.13 entail that, under the pre-932

vious fixed-parameter restrictions (including dimensions of the recourse spaces), the933

MSLP problem is polynomial-time approximately solvable for a large class of cost dis-934

tributions. This applies in particular to distributions like Gaussians, which are com-935

binatorially tight. In this case, condition 1 of Definition 5.14, whereas condition 2936

follows from the result of [8], implying that the exponential function, restricted to the937

interval (−∞, 0], can be approximated in polynomial time.938

6. Conclusion and perspectives. This polyhedral approach enlightens the939

structure of multistage stochastic linear problems. It allows us to derive theoretical940

complexity results for a large class of random variables. However, the combinatorics941

of the polyhedral used suffers from the curse of dimensionality and all chamber com-942

plexes and normal fans cannot be computed in practice in high dimension. To avoid943

this problem, we leverage in [17] the local exact quantization result to define general-944

ized adaptive partition based algorithms for 2SLP when the constraints have general945

distributions. This technique can be adapted to the multistage setting, see [18]. More-946

over, we exploit the present approach to develop, in [19], a “higher order” simplex947

algorithm, following a path on the vertices of the chamber complex, and updating lo-948

cally the normal fan. Finally, these new objects, and in particular the weighted fiber949

polyhedron may allow us to better understand the dependence of MSLP with the950

distribution of random variables, for example by linking it with the nested distance951

[41], in order to improve the results on scenario tree approximations, whether they952

are statistical or not.953
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