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EXACT QUANTIZATION OF
MULTISTAGE STOCHASTIC LINEAR PROBLEMS

MAEL FORCIER *, STEPHANE GAUBERT f, AND VINCENT LECLERE *

Abstract. We show that the Multistage Stochastic Linear Problem (MSLP) with an arbitrary
cost distribution is equivalent to a MSLP on a finite scenario tree. We establish this exact quan-
tization result by analyzing the polyhedral structure of MSLPs. In particular, we show that the
expected cost-to-go functions are polyhedral and affine on the cells of a chamber complex, which
is independent of the cost distribution. This leads to new complexity results, showing that MSLP
becomes polynomial when certain parameters are fixed.

1. Introduction. Stochastic programming is a powerful modeling paradigm for
optimization under uncertainty that has found many applications in energy, logistics
or finance (see e.g., [49]). Multistage Stochastic Linear Problems (MSLP) constitute
an important class of stochastic programs. They have been thoroughly studied, see
e.g., [, 42]. One reason for this interest is the availability of efficient linear solvers and
the use of dedicated algorithms leveraging the special structure of linear stochastic
programs ([54, 4]).

In this paper, we show that every MSLP with general cost distribution is equiv-
alent to an MSLP with finite distribution. This leads to explicit representations of
their value functions and to new complexity results.

1.1. Multistage stochastic linear programming. Let (Q, A, P) be a proba-
bility space. Given a sequence of independent random variables ¢; € L!(Q, A, P; R™)
and & = (A4, By, by), with t € [T] :={1,...,T}, we consider the MSLP given by

T
min ¢ o —I—E[Zc:wt]

(wt)tG[T] =2

s.t. Al.’El < b17

(1.1)
Atmt + Btmt_l < bt a.s. Vte {2, ‘e ,T},
oy € Loo(Q, A, P;R") Vte{2,...,T},
wtﬁ]‘—t Vt€{2,,T},

where 1 = x1, A1 = Ay and by = b; are deterministic and F; is the o-algebra gen-
erated by (c2,&s,...,¢t,&:). The last constraint, known as nonanticipativity, means
that x; is measurable with respect to F;.

Most results for MSLP with continuous distributions rely on discretizing the dis-
tributions. The Sample Average Approximation (SAA) method (see e.g., [49, Chap.
5]) samples the costs and constraints. It relies on probabilistic results based on a
uniform law of large number to give statistical guarantees. Obtaining a good approx-
imation requires a large number of scenarios. In order to alleviate the computations,
we can use scenario reduction techniques (see [14, 27]). Latin Hypercube Sampling
(LHS) and variance reduction methods are also used to produce scenarios. Finally,
one generates heuristically “good” scenarios, representing the underlying distribution
(see [28]). Alternatively, we can leverage the structure of the problem to produce
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finite scenario trees (see [30, 37, 16]) that yields bounds for the value of the true op-
timization problem. In each of these approaches, one solves an approximate version
of the stochastic program, with or without statistical guarantee.

With the independence assumption, Problem (1.1) is often tackled through Dy-
namic Programming approaches. One well-developed approach is the Stochastic Dual
Dynamic Programming algorithm (SDDP) [40, 48], and its brethren, largely used in
energy applications. Until the recent work [18], leveraging the tools developed here,
these algorithms required finitely supported distribution, often obtained through SAA.

1.2. The exact quantization problem. Here, we aim at solving exactly the
original problem, by finding an equivalent formulation with discrete distributions.
This notion of equivalent formulation is best understood through the dynamic pro-
gramming approach of MSLP. We define the cost-to-go function V; inductively as
follows. We set Vryq =0 and for all t € {2,...,T}:

Vi(zs_1) = E [Vt(l“t—l, e, &)l
(12) v;f(l'tflv Ct, 'gt) = min C:xt + ‘/t+1(xt)

x¢ ER™t

s.t. Atmt + Bt(Etfl < bt.

where z;_1 € R"-1 ¢, € R™ and & := (A4, By, by) € RéXnt o RbeXni-1 o Rb = T,

We choose to distinguish the random cost ¢; from the noise &; affecting the con-
straints. Indeed our results require &; to be finitely supported (see ?? and Example 1)
while ¢; can have a continuous distribution. This separation does not preclude cor-
relation between ¢; and &;. However, we require {(ct,&:)}+e[r) to be a sequence of
independent random variables to leverage Dynamic Programming, even though some
results can be extended to dependent (&;):c[r)-

We say that a MSLP (with stagewise independence) admits a local exact quanti-
zation at time t at x;_; if there exists a finitely supported (¢, ét)te[T] that yields the
same expected cost-to-go functions i.e., such that

Vi(wi—1) = E[Vt(iﬂt—l, e, &)] = E[‘Z&(xtflaétvét)]

A quantization is uniform if it is locally exact at all 2;_; € R™, and all ¢ € [T].

COROLLARY 1.1. If there exists a uniform exact quantization for Problem (1.1),
then the expected cost-to-go functions Vi are polyhedral.

Proof. It is well known (see e.g., , [49, prop 2.15]) that a finitely supported MSLP
admits polyhedral expected cost-to-go functions. ]

ExXAMPLE 1 (No uniform exact for stochastic constraints). Here, w denotes
a uniform random variable on [0,1]. We consider two simple example with stochastic
B and b respectively.

HliHIg
ye .
1 ife <1
Vi(z) =E st ur <y ]E[max(ux,l)}{z_’_l frs1
1<y 2 2z
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min L e<o
V3(z)=E |44 u<y = E[max(z,u)] = { &2 ifz €[0,1].
<y T ife>1

As both cost-to-go functions are not polyhedral, we cannot hope to find uniform
exact quantizations in these cases.

1.3. Contribution. We develop a geometric approach, which enlightens the
polyhedral structure of MSLP. We first establish exact quantization results in the
2-stage case showing that there exists an optimal recourse affine on each cell of a
polyhedral complex which is precisely the chamber complex [3, 44], a fundamental
object in combinatorial geometry. A chamber complex is defined as the common
refinement of the projections of faces of a polyhedron. In particular, Theorem 3.2
provides an explicit exact quantization, in which the quantized probabilities and costs
are attached to the cones of a polyhedral fan A" (we refer the reader to [13, 58, 25, 20]
for background on polyhedral complexes and fans). On each cone N € N, we replace
the distribution of ¢l,; v, where ri N stand for the relative interior of N, by a Dirac
distribution concentrated on the expected value éy = E [c|c € ri N], and an associated
weight py = P[c eriN ] Further, A is universal in the sense that it does not depend
on the distribution of c.

In order to extend this result to the multistage case we establish in Lemma 4.1
a Dynamic Programming type equation in the space of polyhedral complexes. Then
we show an exact quantization result in Theorem 4.6.

We apply this polyhedral approach to obtain polynomial time complexity results
considering both the exact computation problem and the approximation problem,
when certain parameters are fixed. For distributions that are uniform on polytopes or
exponential, we show the MSLP can be solved in a time that is polynomial provided
that the horizon T and the dimensions ns, ..., ny of the successive recourses are fixed.
The proof relies on the theory of linear programming with oracles [24] as well as on
upper bound theorems of McMullen [39] and Stanley [52] concerning the number of
vertices and the size of a triangulation of a polyhedron. We obtain a similar result for
the approximation problem. This is more widely applicable since the distribution cost
can now be essentially arbitrary; we only assume that it is given implicitly through an
appropriate oracle (see Definition 5.10) — this applies in particular to any distribution
with a smooth density with respect to Lebesgue measure.

In summary, our main contributions, shedding light on the geometry of polyhedral
stochastic programming problems, are the following:

1. MSLP with arbitrary cost distribution and finitely supported constraints ad-
mit a uniform exact quantization result, i.e., are equivalent to MSLP with
discrete cost distribution;

2. The expected cost-to-go functions of such MSLP are polyhedral and affine
on the cells of a universal polyhedral complex (i.e., independent of the cost
distribution) which is precisely the chamber complex;

3. In the 2-stage case, the expected cost-to-go function is characterized in terms
of a weighted extension of the fiber polytope;

4. We give polynomial time complexity results for 2SLP and MSLP, in exact
and approximate models of computations, when certain parameters are fixed.
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1.4. Comparison with related work. The pioneering work of Walkup and
Wets [56] developed a combinatorial approach of deterministic parametric linear pro-
gramming. Higher notions of polyhedral geometry, such as secondary fan and fiber
polytopes, were subsequently introduced, with motivations from outside of optimiza-
tion, by Gelfand, Kapranov and Zelevinsky [22] and by Billera and Sturmfels [3].
Thomas and Sturmfels [53] and later De Loera, Rambau and Santos [13] established
important links between these concepts and (parametric) linear optimization. Fiber
polytopes are still of considerable interest. In particular, Black, De Loera, Liitje-
harms, and Sanyal applied recently a special class of fiber polytopes, the monotone
path polytopes, in which the projection keeps track of the level-set value of the cost
function, in order to classify simplex iterations [7], see also [6]. Moreover, a general-
ization of fiber polytopes to the non-polyhedral case, called “fiber convex bodies”, has
been recently considered [38]. Here, our contribution shows how polyhedral notions
explain the quantization problem. Further, we consider general cost distributions in
many of the statements, and in particular, we extend the notion of fiber polytope
by considering non-uniform measures, which is needed in applications to stochastic
optimization.

More precisely, the basis decomposition theorem of Walkup and Wets describes
how the value of a linear program in standard form varies with respect to the cost
and to the right-hand side of the constraints. In the 2-stage case, we can see the
collection of rows of A as a vector configuration, and the right-hand side of the re-
course problem b — Bx as a height function which determines a regular subdivision
of this configuration. The space of regular subdivision is represented by the so called
secondary fan [13]. We may apply this theorem to the dual problem of the recourse
problem to deduce that the expected cost-to-go function is affine on each cell of an
affine section of the secondary fan. This affine section can be shown to coincide with
the chamber complex used here. However, the basis decomposition theorem cannot be
applied to the extensive form of a multistage problem. In particular nonanticipativity
constraints cannot be tackled in this way. Thus, we choose to develop an approach
through chamber complexes as it is more direct, allowing us to obtain also a result in
the multistage case.

The complexity of stochastic programming has been extensively studied. Dyer
and Stougie [15] proved that 2-stage stochastic programming with discrete distribution
is §P-hard, by reducing to it the problem of graph reliability. Hanasusanto, Kuhn and
Wiesemann [26] showed that solving, with a sufficiently high accuracy, the 2-stage
linear programming (2SLP) with continuous distribution is also $P-hard, exploiting
the fP-completeness of the computation of the volume of knapsack polytopes and
order polytopes. Shapiro and Nemirovski showed in [50] that 2SLP (and MSLP with
fixed horizon) can be approximated, with high probability and up to precision ¢,
by the SAA method with a number of scenario polynomial in 1/¢. Furthermore,
[51] showed that 2SLP (also true for first-stage integer decision) can be solved, with
high probability, in a pseudo-polynomial time, i.e., polynomial in 1/¢ and in the
input size. In contrast, our approach shows that 2SLP and MSLP can be solved in
polynomial time in log(1/¢) when certain parameters are fixed. Thus, a high accuracy
is accessible, but only for a restricted class of instances. This should also be compared
with results of Lan [31] and Zhang and Sun [57], who independently analyzed the
complexity of SDDP. It follows from their results that finitely supported MSLP can
be solved approximately in pseudo-polynomial time in the error approximation £ when
all the dimensions and the horizon are fixed. In particular, the complexity of these
SDDP methods is polynomially bounded in 1/e. In contrast, our approach shows
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that MSLP can be solved approximately in polynomial time in log(1/e), when T,
na,...,n are fixed. In particular, the first state dimension is not fixed. Moreover,
we obtain polynomial complexity bounds in the exact (Turing) model of computation
for appropriate classes of distributions. Note that in the approach presented here,
contrary to SDDP like methods, we do not rely on statistical sampling and the value
functions are computed exactly in one pass only. However, the objective of SDDP
is to obtain quickly an approximate solution whereas our approach computes exactly
the epigraph of the expected cost-to-go function.

The complexity of multistage stochastic integer linear programs, with finitely
supported distribution, have recently been studied in [29] based on results for two-
stage integer programs compiled in [12, Chapter 4].

1.5. Structure of the paper. We recall, in Section 2, notions from the theory of
polyhedra: polyhedral complexes, normal fans and chamber complexes. In Section 3 we
establish the exact quantization result for 2SLP. In Section 4, we show that chamber
complexes can be propagated through dynamic programming, leading to the exact
quantization result for the MSLP. Finally, in Section 5, we draw the consequences of
our results in terms of computational complexity.

1.6. Notation. As a general guideline bold letters denote random variables,
normal scripts their realisation. Capital letters denote matrices or sets, calligraphic
(e.g., N) denote collections of sets. The indicator function Ip (resp. 1p) takes value
0 (resp. 1) if P is true and 400 (resp. 0) otherwise. We set [k] := {1,...,k}, and we
denote by §E the cardinal of a set £. We denote by Cone(A) := AR’} the conic hull of
the columns of A. The inequality = < y refers to the standard partial order, given by
Vi, z; < y;. We denote by F' C G if F is a subface of G. Further, ri(E) is the relative
interior of the set F, i.e., the greatest open set included in E for the topology of the
smallest vector subspace containing E. Moreover, dom(f) = {z| f(z) < +oo} is the
domain of f, and epi(f) = {(z, 2) | f(z) < z} the epigraph of f. Finally, L denotes a
disjoint union.

2. Polyhedral tools. Our proofs rely on the notions of normal fan and chamber
complex of a polyhedron recalled here. These polyhedral objects reveal the geomet-
rical structure of MSLP. Both the normal fan and the chamber complex are special
polyhedral complexes.

2.1. Polyhedral complexes. Polyhedral complexes are collections of polyhedra
satisfying some combinatorial and geometrical properties. In particular the relative
interiors of the elements of a polyhedral complex (without the empty set) form a
partition of their union. We refer to [13] for a complete introduction to polyhedral
complexes and triangulations.

DEFINITION 2.1 (Polyhedral complex). A finite collection C of polyhedra is a
polyhedral complex if it satisfies i) if P € C and F is a non-empty' face of P then
FeC and i) if P and Q are in C, then PNQ is a (possibly empty) face of P and Q.
Elements of a polyhedral complex are called cells. We denote by suppC := UPec P
the support of a polyhedral complex. Further, if all the elements of C are polytopes
(resp. cones, simplices, simplicial cones), we say that C is a polytopal complex (resp.
a fan, a simplicial complex, a simplicial fan).

1For some authors, a polyhedral complex must contain the empty set. We do not make this
requirement.
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We recall that a simplex of dimension d is the convex hull of d 4+ 1 affinely in-
dependent point and that a simplicial cone of dimension d is the conical hull of d
linearly independent vectors.

PROPOSITION 2.2. For any polyhedral complex C, the relative interiors of its ele-
ments (without the empty set) form a partition of its support: supp(C) = || ri(P).
pPeC

For example, the set of faces F(P) of a polyhedron P is a polyhedral complex.

DEFINITION 2.3 (Refinements and triangulation). Let C and R be two polyhedral
complezes, we say that R is a refinement of C, denoted R < C, if suppR = suppC
and for every cell R € R there exists a cell C' € C containing R: R C C.

Note that < defines a partial order and the meet associated with this order is
given by the common refinement of two polyhedral complexes C and C' defined as the
polyhedral complex of the intersections of cells of C and C'? :

CAC :={RNR|ReC,R €C'}.

A triangulation T of a polytope Q is a refinement of F(Q) such that the cells of
dimension O of T are the vertices of Q and T is a simplicial complex. A triangulation
T of a cone K is a refinement of F(K) such that the cells of dimension 1 of T are
the rays of K and T is a simplicial fan.

2.2. Normal fan. The normal fan is the collection of the normal cones of all
faces of a polyhedron. See [36] for a review of normal fan properties.

Recall that the normal cone of a convex set C C R? at the point z is the set
Ne(z) = {a € RY | Vy € C, a'(y —z) < 0}. More generally, for a set E C C,
Nc(E) = ﬂer Nc(ZL')

P P
Figure 1: Two normally equivalent polytopes P and P’ and their normal fan A/(P) =
N (P’). The green circle represents the singleton {0} which is the normal cone Np(z)
for every z € ri(P).

DEFINITION 2.4 (Normal fan). The normal fan® of a convex set C is the collection
of normal cones

N(C) :={N¢c(x) |z € C}.

We say that two convex sets C and C’ are normally equivalent if they have the same

normal fan: N (C) =N (C"), see Figure 1.

2We allow C and C’ to have different supports. In that case, C AC’ is well-defined but there is no
common refinement. The support of C A C’ is then equal to the intersection suppC NsuppC’.

3Sometimes called outer normal cones and fan, as opposed to inner cones obtained either by
inverting the inequality in the definition of the normal cone or by taking the opposite cones respect
to the origin.
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Recall that the polar of a convex set C' is the set C° := {a € R? |Vx € C, a'x <
0} = N¢(0) and the recession cone of a convex set C is given by rc(C) := {r €
C|Vu€eRy, Ve € C, z+ ur € C}. In particular, for a polyhedron, the recession
cone and its polar are given by

(2.1) rc ({z | Az < b}) = {z | Az < 0} re ({z | Az < b})o = Cone(A") .

PROPOSITION 2.5 (Basic properties of normal fans (see e.g., [36])).
If P is a polyhedron, the normal fan N'(P) is a polyhedral complex. Further, the
support of N(P) can be expressed as the polar of the recession cone of P, i.e.,

(2.2) supp N (P) = (rc(P))°.

2.3. Chamber complex. The affine regions of the cost-to-go function will cor-
respond to cells of a chamber complex. Projections of polyhedra, fibers and chambers
complexes are studied in [3, 44, 43].

DEFINITION 2.6 (Chamber complex). Let P C R? be a polyhedron and w a linear
projection defined on RY. For x € w(P) we define the chamber of z for P along 7 as

opr(x) = m w(F).

FeF(P)s.t. zen(F)

The chamber complex C(P,m) of P along 7 is defined as the (finite) collection of
chambers, i.e.,

C(P,m):={opx(x)|xzecm(P)}.

Further C(P, ) is a polyhedral complex such that supp C(P, ) = w(P). In partic-
ular, {ri(o) |0 € C(P, )} is a partition of w(P).
More generally, the chamber complex of a polyhedral complex P is

C(P,7) :={opx(z) |z €m(supp(P))}.

with op (x) := N w(F).
FePs.t. zen(F)

LEMMA 2.7 (Chamber complex monotonicity with respect to refinement order).
Let R < S be polyhedral complexes of R? and a projection ©. Then, C(R,m) < C(S, ).

Proof. For any R € R, there exists Sp € S such that R C Sr. Let =z €
suppC(R, m) = m(supp R) = m(supp S) = suppC(S, )

orox(z) == N m(R) C N 7(SR)
ReRs.t. zen(R) ReRs.t. zen(R)
C ﬂ w(S) = o5 x(x) € C(S, ). O
SeSs.t. zen(S)

Recall that the fiber P, of P along 7 at x is the projection of P N7~ *({z}) on
the space Ker(rm) (see Figure 2). An important property of a chamber complex is
that all fibers are normally equivalent in each relative interior of cells of the chamber
complex. More precisely, let o € C(P,7) be a chamber, and « and 2’ two points in its

7

This manuscript is for review purposes only.



268
269

278
279
280
385

283

» Im(7)

Figure 2: A polytope P and its projection 7(P) in green, its chamber complex in red
on the z-axis and a fiber P, in blue on the y-axis, for the orthogonal projection 7 on
the horizontal axis, a face F' and its projection 7(F') in purple.

relative interior, then, P, and P,/ are normally equivalent, see [3]. Thus, we define
the normal fan N, above’ o € C(P,7) by:

Ny :=N(P,) for an arbitrary = € ri(o).

The terms parametrized polyhedron, instead of fibers, and validity domains, instead of
chambers, are also used in the literature [10, 35].

3. Exact quantization of the 2-stage problem. Let (2, A,P) be a prob-
ability space, ¢ € L'(2, A,P;R™) be an integrable random vector, and suppose
¢ = (A, B,b) is deterministic. We study the expected cost-to-go function of the
2-stage stochastic linear problem, written as

3.) V(z) :=E {V(a@,c)} with V(z,¢) := yrgﬂig% 'y

s.t. Ay + Bx <b.

The dual of the latter problem, for given x and c, is

3.2 Bz —b)TA
(32) max  (Bz —b)
st. ATh=—¢,
A>0.

We denote the coupling constraint polyhedron of Problem (3.1) by

P:={(z,y) e R"™™ | Ay + Bx < b},

and 7 the projection of R™ x R™ onto R™ such that n(z,y) = =.

4The normal fan N, C 2Ke*(™) above o should not be confused with N'(¢) C 2I™(7) the normal

fan of o which will never appear in this paper.
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The projection of P is the following polyhedron:
(3.3) m(P) ={x € R" |3y € R™, Ay + Bz < b},
and for any x € R", the fiber of P along 7 is
(3.4) P, :={y e R™ | Ay + Bx < b}.

3.1. Chamber complexes arising from 2-stage problems. The following
lemma provides an explicit formula for the cost-to-go function. It shows that an
optimal recourse can be chosen as a function of ¢ that is piecewise constant on the
normal fan of P,.

LEMMA 3.1. Let x € R™ and c € R™,

1. If & ¢ 7(P), then V(z,c) = 400;

2. If x € m(P) and —c ¢ Cone(AT), then V(z,¢) = —o0;

3. Suppose now that v € w(P) and —c € Cone(AT"). For each
cone N € N(P,), let us select in an arbitrary manner a vector cy in ri(—N).
Then, there exists a vector yy(x) which achieves the minimum in the ex-
pression of V(x,cN) in (3.1), independently of the choice of cy € ri(—N).
Further, for any selection of such a yn(x), we have

(3.5) V(z,c) = Z lec rin ¢ yn(z) .
NEN (Pz)

Proof. The first point comes from the definitions of 7(P) in (3.3) and V(z,¢) in
(3.1). If x € 7(P) and —c ¢ Cone(AT), then the primal problem (3.1) is feasible and
the dual problem is (3.2) infeasible. Thus, by strong duality, V(x,c) = —00.

By (2.2), we have that (rc(Pz))o = supp N (P;). Further, by (2.1) all non-empty
fibers P, have the same recession cone {y | Ay < 0} whose polar is Cone(AT).

Assume now that z € 7(P) and —c € Cone(A") = supp(N(P;)). Then, there
exists N € N(P;) such that —c € ri(N). Moreover, for every choice of cy € —ri(IV),
we have argmin,cp cly = arg min,c p ey, see e.g., [36, Cor. 1(c)]. Moreover,
there exists yn(z) such that N = Np,_(yn(z)) by definition of a normal cone, thus
yn(z) € arg mingep, cAy; in particular, the latter arg min is non-empty. Thus, when
—c er1i(N), V(z,c) = cyn(z).

Thanks to the partition property of Proposition 2.2, we know that ¢ belongs
to the relative interior of precisely one cone in the normal fan of P,, in particular
1= ZNEN(PT) Tec— i n leading to (3.5). 1]

Having this property in mind, we make the following assumption:

ASSUMPTION 1. The cost ¢ € L*(Q, A, P;R™) is integrable with ¢ € — Cone(AT)
almost surely.

THEOREM 3.2 (Local, uniform  quantizations of the cost distribution).  Let
x € w(P), and o be a cell of C(P, ) the chamber complex of the coupling constraint
polyhedron P along the projection m on the x-space. Assume that x € ri(o).

Under Assumption 1, for every refinement R of —N,, we have:

(36) V(LL’) = Z pRV(CE, éR) with V(LL‘, éR) := min é;;y + ]IAerBng.

cRm
RER Y

where pr :=P[c € 1i(R)] and ég :=E|[c|c €1i(R)] if pr > 0 and ég :=0 if pr = 0.
In particular, if R is a refinement Of/\O'EC(P,‘I\') —Ny, (3.6) holds for all z € w(P).
9
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This is an exact quantization result, since (3.6) shows that V(x) coincides with the
value function of a second stage problem with a cost distribution supported by the
finite set {¢r | R € R}.

Proof. Let o € C(P, ) and x € ri(o) then, by definition, N (P,) = N,.

For R € R, there exists one and only one N € —N/, such that ri(R) C ri(N), that
we denote N(R). Indeed, as R is a refinement of —N, there exists at least one, and
as — N, is a polyhedral complex it is unique.

By Lemma 3.1, under Assumption 1 and since x € 7(P),

V(IL') =E {NE;(P )II-CG— riNCTyN('r):|

=E [ Z Z Teerir cTyN(x)} by the partition property,
Ne—N, ReR|ri(R)Cri(N)

= Z E[Leerire Jyn(r)(z) by linearity,
RER

= Z PRERYN(R) (7)),
RER

~ . LT
= Juin Ry + Lay+Ba<o,
ReR

the last equality is by definition of yn(g)(z) as ¢gr € N(R), which leads to (3.6). O

Note that R = A, ccmax(p,r) —No satisfies the condition of Theorem 3.2 since if
7 is a face of o in the chamber complex, N, refines N, by [44, Lemma 2.2].

3.2. Illustrative example and analytical formulas. In this section, we il-
lustrate the exact quantization result on an example, for different distributions. To
apply this result, we need to compute the quantized costs and probabilities ¢z and
pr arising in Theorem 3.2. This can be done exactly for uniform, exponential and
Gaussian distributions. The formulas of quantized probabilities and costs are summed
up in Table 1. They rely on the exponential valuation of a simplicial cone (see [9]
or [1, (8.2.2)]) in the exponential case, and on solid angles [45] for Gaussians (see
[19] for details). We only provide these formulas for simplices or simplicial cones S
with dim(S) = dim(supp ¢). This extends to any polyhedron R, through triangula-
tion of R N supp(c) into simplices and simplicial cones (Sk)rep)- We then compute
PR = Zizl ps, and ¢ = 22:1 Ds,.Cs,/Pr if pr # 0 and ¢r = 0 otherwise. More-
over, in [32], Lasserre showed analytical formulas to integrate polynomials on a simplex
which open the door to formulas for distributions with polynomial densities, such as
the Beta distribution. The approximation of the quantized costs and probabilities for
general distributions is treated in subsection 5.2.

Consider the following second-stage problem, with n =1 and m = 2 :

st. Jylh <1, y1<zandy <z

The coupling polyhedron is P = {(z,y) € R x R?|||y]1 < 1,41 < @, y2 < x}
presented in Figure 3, and its V-representation is the collection of vertices (0, —1,0),

10
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Uniform Exponential Gaussian
1. Q ef °1, 7%CTM72C
dP(0) | i@ Can@ @) | ey Lano(©) e F awu™
supp ¢ Polytope: @ Cone: K R™
b Voly(S) [det(Ray(9))] 1 Ang (M-15)
Vola(Q) DK (0) reRay(S) —rTo
} 1 —ry var(z2H)
cs 4T 2ovevert(s) ¥ (ZreRay(S) m)ie[m] r(%i M SpCtr (SN Sm-1)

Table 1: Probabilities pg and expectations ¢g arising from different cost distributions
over simplicial cones or simplices S C supp(c) with dim .S = dim(supp ¢), where £ 4
is the Lebesgue measure on an affine space A. We denote by Vert(S) the set of
extreme points of a simplex S and by Ray(.S) a collection of arbitrary representatives
of extreme rays of a simplicial cone S. We denote by ®p(0) := [, eeTcdﬁAH(P)(C) the
exponential valuation of P with parameter 6, (see [1]). The solid angle is denoted by
Ang and the spherical centroid by SpCtr (see [45]).

Figure 3: The coupling polyhedron P in blue, different cuts and fibers P, vertical in
yellow, and its chamber complex C(P,7) in red on the bottom.

(-0.5,-0.5,-0.5), (0,0,-1), (1,1,0), (0.5,0.5,0.5), (1,0,1) and the ray (1,0,0). By
projecting the different faces, we see that its projection is the half-line, 7(P) =
[-0.5,+00) and its chamber complex C(P,7) is the collection of cells composed of
{-0.5}, [-0.5,0], {0}, [0,0.5], {0.5}, [0.5,1], {1}, [1,400) as presented in Figure 3.
As there are 4 different maximal chambers, there are 4 different classes of normally
equivalent fibers as shown in Figure 4.

We evaluate ¢y and py for N € —N,, using the formulas of Table 1. For example,
when ¢ is uniform on the centered ball for the co-norm of radius R, Figure 5 shows
the regions of which the areas and centroids need to be computed. We sum up V in
Figure 6 and present its value in Table 2 for different distributions.

3.3. Weighted fiber polyhedron. In this section, we provide an explicit rep-
resentation of the expected cost-to-function in terms of the support function of a

11
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Y2

Y1

(a) z = —0.25, (b) x = 0.25, (¢) x =0.75, (d) z =1,
o =1[-0.5,0] o =10,0.5] o =10.5,1] o =[1,400)

Figure 4: Fibers P, in blue and their normal fan N'(P,) = N, in green for various .

Ng Ng Ng
A N4 A N4 I N1 N4 N1
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° > N5 o > Nj o 20— N °o X °
o AN o )
N3 Ng N2 N3 N2 N3 N2
(a) o =[-0.5,0] (b) o =10,0.5] (c) o0 =10.5,1] (d) o =[1,+00)

Figure 5: Exact quantization illustrated. The normal fan A, in green with N; =
W,"R*, ¢ is uniform on the support Q = —Q = B, (0, R) in light orange, the sets
W,"R*NQ in red. The polyhedral complex R, shown in red or orange. The quantized
costs ¢y are determined by centroids (small circles in pink).

> T
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Figure 6: Graph of function V for various distribution of ¢ with R =0 =~ = 1.

weighted generalization of the notion of fiber polytope.

In [3], given a polytope P and its image ) = w(P) under a linear projection map-
ping m, Billera and Sturmfels defined the fiber polytope of P over () as the normalized
379 Minkowski integral ﬁ@) fQ P.dz of bounded fibers P, (defined in (3.4)) where x is
380 uniformly distributed on the polytope Q. We now extend the notion of fiber poly-
381 tope. First, we allow the fibers to be polyhedron with non trivial recession cones and
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383
384
385
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387
388
389

390

391
392
393
394
395
396
397

404
405
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408
409

dP(c) -05<2<0 0<z<05 05<z<1 ls=
Lyjelly < _ - = —
Neb<rge | STR(1427) | SE(7+ 6x) F2+w) 5
2,=6lcl - = = 3
T = <1(7 + 62) 32+ 72) %
Ljejloo < — = - =
Bele<rge | =E(54100) | SE(5+4a) T (3+2) =5
eTlel3/2? 5|y @4vE(420) | —a(@4+vE42VED) | =294 (=14vD)e) | _ 2
2772 2v/2m 2V27 var Vil
Llelasr g | —RE+v2)(14+22) | —R+vVZ+2V22) | —4R(+(-1+V2)zx) | _4V2R
TR2 3 3m 3w am

Table 2: Different values of V'(x) for different distributions of the cost c.

lineality spaces. Secondly, we replace the uniform distribution on a polytope by a
probability distribution on a polyhedron. We call this new polyhedron the weighted
fiber polyhedron. To link this notion with stochastic programming, we give the defini-
tion with respect to the dual fibers D,. We denote by D, := {\ € R{. | ATA 4 ¢ = 0}
the admissible dual set for a fixed cost ¢ € — Cone(A), see (3.2).

DEFINITION 3.3 (Weighted fiber polyhedron). Let Assumption 1 holds. The
weighted fiber polyhedron E of the bundle (Dc)ccsupp(e) 95 the Minkowski integral of
all the fibers at ¢ when c varies according to its probability distribution:

E:=E[D.] = /DC]P’(dc) = {/)\(C)]P’(dc) ‘ Ac) € D P-a.s., A€ L'(P, me)}.

Note that, when P is a uniform probability measure on a polytope, we recover
the original fiber polytope. The weighted fiber polyhedron is indeed a polyhedron as,
by [3, Theorem 1.5], we can replace the Minkowski integral by a finite Minkowski,
leveraging the normal equivalence of the fibers on the cells of the chamber complex.
More precisely, let D := {(\,¢) € R® x R"|ATA 4+ ¢ = 0,A > 0} be the dual
coupling polyhedron, and 72 the orthogonal projection of R x R™ to R™. Recall
that C(D, 7)¢) denotes the chamber complex of D along 7). We have

yeC(D, )

where p, := P[c € ri(y)] and &, := E[c|c € ri(y)] is the centroid of the cell v if
Dy > 0 and ¢&, is an arbitrary point in ri(y) if p, = 0.

The weighted fiber polyhedron synthesizes the polyhedral structure of 25LP with
stochastic cost ¢. In particular, the expected cost-to-go function V is, up to an affine
transformation, equal to the support function of the weighted fiber polyhedron.

THEOREM 3.4. Let Assumption 1 holds. Then, the expected cost-to-go V defined
in (3.1) is the composition of the support function og of the weighted fiber polyhedron
E defined in Definition 3.3 and the affine transformation a : * — Bz — b

V(z) =ogoa(z) :=sup (Bx —b)"T\.
A€E

In particular, the affine regions of V' are exactly the maximal cells of the polyhedral
complexr a~* (N(E)) .
13
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411
412
413

414

415

117
418
419

126
427
428
429
430
431
132

433

434
435
436
437
438

439

440
441
442
443
444
445
447
448

The proof consists in applying the interchangeability theorem (see [46, Thm 14.60])
to the dual formulation of the second stage problem.

Proof. Under Assumption 1, we have ¢ € — Cone(AT) almost surely, thus for
r € R™,

V(z)=E[V(z,¢)],

=E[ sup (Bz —b) "X — Lep,] by (3.2),
AER?
_ / sup ((Bz =)\~ Txep, | P(de),
— Cone(AT) A\eR?

- sup / ((Bx )T Ag) — ]I,\(c)6DC>IP’(dc).
X(.)eLY(P,R™,R?) J — Cone(AT)

Indeed, we can apply [46, Thm 14.60] since the opposite of the function (¢, \) —

(Bx —b)TA — I ep, is a normal integrand (see [46, Def 14.27]) and L'(P,R",R?) is a

decomposable space (see [46, Def 14.59]) with the measure P. Thus,

V= s (o) [ MOP(e) ~ In@ep, b ass
AC)EL (PR RY) — Cone(AT)
= sup (Bx —b)" / A(e)P(de),
A)EL (BR" R | AM(e)eD, - as. — Cone(AT)
=sup (Bz —b) T\ d
AE€E

REMARK 3.5 (Links between uniform exact quantization and secondary fan). We
can retrieve the uniform exact quantization Theorem 3.2, in a dual formulation, from
Theorem 3.4 and from the decomposition as a Minkowski sum in (3.7). Note that the
weighted fiber polyhedron is mot universal as it determines exactly the affine regions
of the expected cost-to-go function, for a given cost distribution, and not only a re-
finement. However, there exists an explicit and universal fan, i.e., independent of the
distribution of ¢, which refines N'(FE). More precisely, we have

(3.9) —Y-fan(AT) S N(E)

where Y -fan(AT), is the so-called secondary fan, defined in [13, 5.2.11]. It is the
normal fan of a well-studied polytope called secondary polytope introduced in [22]
(see also [13, Section 5]). Note that the secondary polytope is a special case of fiber
polytope ([3]).

Further, through technical, yet basic, computations, we also have that

(3.10) C(P,m)=a '(=%-fan(A")).

In particular, while providing a more precise characterization of the affine regions,
(3.9) and (3.10) together with Theorem 3.4 show that the cells of the chamber com-
plex are universal affine regions. A result we establish in Theorem 3.6 by a more
elementary way.

However, to extend these results to the multistage setting, we would need a more
substantial generalization of fiber polytopes, taking into account nonanticipativity
constraints and the nested structure of the control problem. We discuss such a gen-
eralization in [19]. In section 4, we develop a more direct approach to the multistage
problem, in terms of chamber complexes.

14

This manuscript is for review purposes only.



149
450
451
452

458
459
460
461
162

463

164
465
466
467

468
169
470
471
472
473
A74
A75

476

3.4. Explicit characterization of expected cost-to-go. As a consequence of
the exact quantization Theorem 3.2, we obtain explicit representations for the values
and subdifferentials of the expected cost-to-go function V. We also show that V is
affine on every cell of the chamber complex for every distribution of the random cost.

THEOREM 3.6 (Characterization of the expected cost-to-go function). Let As-
sumption 1 holds. For x € R™ and c € R™, we denote

DY P = argmax {(Bz —b) "A: ATA = —¢,\ > 0},
the set of optimal dual solutions of the second stage problem. Then,
Vo € C(P,m), Vaz,2’ €ri(o), Ve € supp(c), DY := Db~ Br — pb-Be’,

Set

oy 1= Z BT)\gN and B, = Z —bTAE’N,

Ne-No Ne-No
where AZ is an element of DZ. Then, we have

(3.11a) VYo €C(P,7), VYexco, V(z)=ajz+ b,

3.11b Ve eR™, V(z)=Il,cx T .
(3.11b) z () = Lien(p) + e, Qg Tt B

In particular, for all distributions of ¢ satisfying Assumption 1, V is affine on
each cell of C(P,7), i.e. the cells of the chamber complex are universal affine regions.
Moreover, we characterize the subdifferential of the cost-to-go function as

aV(it) = Nﬂ-(P) (x) + ConV {(ag)gecrnax(Pvﬂ-) ‘ IEU}'

Proof. By the basis decomposition theorem, see [53], we have that D¥ = DY’ for
all ¢ and v’ belonging to the same relative interior of a cone of the secondary fan
Y -fan(WT). In particular, by (3.10), for every z, 2’ in the same relative interior of a
chamber o, we have Db~5B% = DIC’_BC”/.

For all z € ri(¢) € 7(P) and all ¢ € supp(c), by Lemma 3.1, we have V(z,¢) <
400 and then by strong duality, V(z,¢) = (Bx — b)TAS. Then by the exact quanti-
zation result (3.6), for all = € ri(o),

Viz)= Y pnV(zén)= Y. pn(Bz—b)"AN =a)z+ b,
Ne—-N, Ne—-N,

Further, as V' is lower semicontinuous and convex, we deduce (3.11a).

To show (3.11b), suppose first that dim (7(P)) = m. Then, for o € C™*(P, ),
r — a) 2+ B, is a supporting affine function of V' which coincide with V' on o whose
dimension is m. Since |, cemax(p,ry 0 = supp(C(P,m)) = m(P), V is piecewise affine
on the polyhedron 7(P) and equals to +oo elsewhere. Together with convexity of V,
this yields (3.11b). When 7(P) is not full dimensional, we get the same result by
restraining the ambient space to the affine hull Aff (7(P)). Since C(P,w) does not
depend on ¢, for all distributions of ¢ satisfying Assumption 1, V' is affine on each
cell of C(P, ). Finally, the subgradient formula follows from (3.11). d
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REMARK 3.7. Let V™** be the collection of affine regions of V. Theorem 3.6
implies that the chamber complex C™**(P, ) refines V™*. However, it does not imply
that C™**(P, ) = V™a*_ Indeed, if ¢ = 0 P-almost surely, then V™** = {m(P)}.

More precisely, for all cost distribution such that Assumption 1 holds, V™% is the
collection of mazimal elements of a polyhedral complex V such that C(P,7) < V. We
gave an exact representation of V in Theorem 3.4, showing that V = a=* (N(E)).

4. Exact quantization of the multistage problem. In this section, we show
that the exact quantization result established above for a general cost distribution
and deterministic constraints carries over to the case of stochastic constraints with
finite support and then to multistage programming.

We denote by 72-¥ for the projection from R™ x R™ to R™ defined by n%¥(z’,y') =
a’. The projections 7%y, 2%, 74 77,” 1" are defined accordingly. Note that in
the notation 75¥*, x, y and z are part of the notation and not parameters.

4.1. Propagating chamber complexes through Dynamic Programming.
We next show that chamber complexes are propagated through dynamic programming
in a way that is universal with respect to the cost distribution. The following Lemma
shows how to obtain (a refinement of) the affine regions of the cost-to-go function V;.
This refinement depends on the affine regions of Vi1 and not of the value of Vt+15.

Recall that, for a polyhedron P and a vector v, we denote P¥ := arg min,cp ¥
Let f be a polyhedral function on R?, with a slight abuse of notation we denote
epi(f)¥! = arg MiN(, 2) cepi(f) YTz + 2. We denote Fioy (epi(f)) := {epi(f)¥! | €
R?} the set of lower faces of epi(f). The collection of projections (on R?) of lower
faces of epi(f) is the coarsest polyhedral complex such that f is affine on each of its
cells (see [13, Chapter 2]). Moreover, we have

(4.1) mra (epi(f)!) = argegbin Vx4 f(x).

LEMMA 4.1. Let U be a polyhedral function on R™ and U := 7})"* (ﬂow(epi(U)))

a coarsest polyhedral compler such that U is affine on each element of U. Let &
(A, B,b) be fized and Assumption 1 holds. Define, for all x € R™

Q(z,y) = U(y) + Lay+Ba<s,
=E[ min ¢’ .
V() :=E[ min 'y +Qz,y)]
Let V := C(F(P) A (R" x U),m2Y) C 28" with P := {(=,y) | Ay + Bx < b}.
Then, V < C(epi(Q), 7E¥*) and V is a polyhedral function which is affine on each
element of V.

REMARK 4.2. Thanks to a lift variable, we can rewrite the expected cost-to-go
function as V(z) = E [minyeRmﬁzeR‘(m’yﬁz)eepi@) cly+ z] A naive approach would
be to apply directly Theorem 3.2 to this formulation as a 2SLP. However, in the
multistage setting, epi(Q) depends on the latter random costs ¢iy1, ..., cr and appears
in the contraints. Thus, we cannot hope to obtain a universal polyhedral complex
directly. We need the more subtle approach of Lemma 4.1 to show that the affine
regions of V' only depends on the affine regions of R, and on the coupling constraint
polyhedron P and not on epi(Q).

5In other words, the refinement obtained only depends on the projection of the lower faces of
epi(Vi+1) and not the whole epigraph.
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Figure 7: An illustration of the proof of Lemma 4.1: the epigraph epi(Q) of the
coupling function in blue in the (z,y, z) space, the epigraph of U in yellow in the
(y, 2) plane, the affine regions U of U in green on the y axis, the coupling polyhedron
P in orange and brown in the (z, y) plane, the polyhedral complex Q in red and brown
in the (z,y) plane and the chamber complex V in violet on the x axis.

Proof. We have epi(Q) = (R™ x epi(U)) N (P x R) € R™™™*! (see Figure 7).
Since

. T
V@ =E[ min_c'y+z+Tayem@]

by Theorem 3.6 applied to the problem with variables (y, z) and the coupling poly-
hedron epi(Q), V is a polyhedral function affine on each element of C(epi(Q), 7Z:¥:%).
We now show that V < C(epi(Q),7%¥*). As epi(Q) is the epigraph of a polyhedral
function, Q := 7y? (Frow(epi(Q))) C 2" is a polyhedral complex.

Let & € n2¥*(epi(Q)), using notation of Definition 2.6,

Tepi(Q) w2~ (¥) = N o (),
FeF(epi(Q))s.t. Fen¥*(F)
N ﬂ VA (F),
FeFiow(epi(Q)) s.t. zems' ¥ *(F)

= N TEV(F) =i 0 rzv ().
F'eQs.t. zemy Y(F')

Indeed, as epi(Q) is an epigraph of a polyhedral function, if F € F(epi(Q))
such that & € 72¥#(F) then there exists G € Flow(epi(Q)) such that G C F and
T € m2¥*(Q), allowing us to go from the first to second equality. The third equality
is obtained by setting F" = m3¥*(F). Thus, C(epi(Q), m3¥*) = C(Q, 75Y).

We now show that F(P) A (R" xU) < Q. Let G € F(P)A (R" xU). There exist
o €U and F € F(P) such that G = FN(R™ x ). By definition of Fiuy , there exists
¢ € R™ such that o = n%*(epi(U)¥'). We show that G C w%¥%*(epi(Q)™*') € Q.
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Indeed, let (z,y) € G = F N (R™ x 7%= (epi(U)*¥')). We have (z,y) € F C P such
that y € argmin,/cgm {v"y + U(y')}. Which implies that (z,y) € argmin {¢) "¢/ +
U(y') | («/,y') € P}. This also reads, by (4.1), as (z,y) € 75%*(epi(Q)*¥"!). Thus,
G C miv*(epi(Q)**!') € Qleading to F(P)A(R"xU) < Q. Finally, by monotonicity,
Lemma 2.7 ends the proof. ]

REMARK 4.3. In Lemma 4.1, the complex V is independent of the distribution of
c. However, for special choices of ¢, V' might be affine on each cell of a coarser complex
than V. For instance, if U =0 and ¢ = 0, we have that V =l z.vpy, V 1is affine on
T2Y(P). Nevertheless, V = C(P,w%Y) is generally finer than F(x%¥(P)). Note that
the chambers of V can be enumerated thanks to the algorithm described in [10] (where
chambers are called validity domains) or more generally by constructing the secondary
polytope (see [2]).

4.2. Exact quantization of MSLP. We next show that the multistage pro-
gram with arbitrary cost distribution is equivalent to a multistage program with
independent, finitely distributed, cost distributions. Further, for all step ¢, there exist
affine regions, independent of the distributions of costs, where V; is affine. Assump-
tion 1 is naturally extended to the multistage setting as follows

ASSUMPTION 2. The sequence (¢, &t)a<i<r 1S independent.’ Further, for each
t€{2,...,T}, & = (A, By, by) is finitely supported, and ¢; € L*(2, A, P;R™) is
integrable with ¢; € — Cone( A, ) almost surely.

Note that Assumption 2 does not require independence between ¢; and &;. Let
t € [T). For any £ := (A, B,b) € supp(&;) we define the coupling polyhedron
Pt(f) = {(xt_l,xt) e R™-1 x R™ | Awt + Bl‘t_l < b},
and consider, for x;_; € R™-1,
(4.3) Vi(x1-1]€) := E[Inel%{it e 2+ Vis1(24) + Law, 4 Bara <o | & = €]
Then, the cost-to-go function V; is obtained by
(4.4) Vilreo) = Y Pl =& Vilm—1 ] 9).
£esupp(£¢)

The next two theorems extend the quantization results of Theorem 3.2 to the
multistage settings.

THEOREM 4.4 (Affine regions independent of the cost). Assume that (&:)icir
is a sequence of independent, finitely supported, random wvariables. We define by
induction Pry1 = {R""} and fort € {2,...,T}

(4.52) Pre = C(R™ x Py AF(Pi()), miim ™),
7)t = /\ Pt,§~
§€supp &

Then, for all costs distributions (c;)ogi<r Such that (ci, &)o<i<r Satisfies Assump-
tion 2 and all t € {2,...,T}, we have supp(P;) = dom(V;), and V; is polyhedral and
affine on each cell of P;.

6The results can be adapted to non-independent &; as long as c¢; is independent of (cr)r<t
conditionally on (£<¢).
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REMARK 4.5. The definition of Py ¢ as the induction equation (4.5a) is the same
as the definition of V in Lemma 4.1 and illustrated in Figure 7, by taking U = P41,
P =P, x =241 and y = z; (see also Figure 9 for a particular 3SLP example).

Proof. We set for all ¢t € {2,...,T + 1}, V, := 7.1 (Fiow (epi(V2))) the affine
regions of V;. As Vi = 0 is polyhedral and affine on R"T, we have Pry1 = Vryq.
Assume now that for ¢ € {2,...,T}, Viy1 is polyhedral and Py refines Viyq (i.e.,
Vi41 is affine on each cell o € Pyyq).

By Lemma 4.1, V,(-|€), defined in (4.3), is affine on each cell of C(R™ x V41 A
F(Pi(§)),m2-1""") which is refined by Py e = C(R™ X Pigy A F(P(€)), may—1"") by
induction hypothesis and Lemma 2.7. Thus, by (4.4), V4 is affine on each cell of P;. In
particular, V; is polyhedral and P; := A{Esupp ¢, Pt refines Vi, Backward induction

ends the proof. ]
By Lemma 4.1, we have that P, ¢ < C(epi (Qt) Tai 1% where Qf(zt_l,xt) =
Vit1(ze) + Laz,+Ba,_1<p,- In particular, consider ¢ € P¢, then for all z,_; €

ri(o), all fibers epi(Q%)., ,
N (epi(Q%),, ) for an arbitrary z;_; € ri(0).

The next result shows that we can replace the MSLP problem (1.2) by an equiv-
alent problem with a discrete cost distribution.

are normally equivalent. We can then define V¢, =

THEOREM 4.6 (Exact quantization of the cost distribution, Multistage case). As-
sume that (&) 18 a sequence of independent, finitely supported, random variables.
Then, for all costs distributions such that (¢, & )a<i<T Satisfies Assumption 2, for all
t e [T], all z;—1 € R™-1 and all £ € supp(&;), we have a quantized version of (4.3):

T
Vi(xe-1€) = Z Pt,N|g m”&ﬁélt {Ct,N\gxt + Visa (@) + HAa:ﬂert,lgb}-
NeN; ¢

where Ny ¢ := /\UE'Pt,g ~Nie,o and for all & € supp(&;) and N € Ny ¢ we denote

PeNje i=Ple €TiN | & =¢],
) {]E[ct|ct6riN,§t:§] ifP[& = &,@ €riN] #0
CtN‘g = 0 .

otherwise

Proof. Since Vi(xi_1|§) = E[minxteRn“zeR c'zy + 2 + H(ﬁt—17$t7z)€epi(Qf)} and

Py e refines C(epi (Qt) e "0, by applying Theorem 3.2 with variables (zy, 2)
and the coupling constraints polyhedron epi(Qf), we deduce that the coefficients
(ﬁt,N|§)NeNt,5 and (ét,N|§)NeNt,g satisfy

. T
Vi(zi1]€) = Z Pt,Nl¢ o RV 2R {Ct,mext Tzt H(xtfl,xt,z)@pi(@ﬁ}'
NeN; ¢ ’

as the deterministic coefficient before z is equal to its conditional expectation. 0

In particular, the MSLP problem is equivalent to a finitely supported MSLP as
shown in the following result.

For ty € [T'—1], we construct the scenario tree Ty, as follows. A node of depth t—tg
of Ty, is labeled by a sequence (N;,&; ), <r<t Wwhere N, € Ny ¢ and & € supp(&;).
In this way, a node of depth ¢t — ¢y of 7;, keeps track of the sequence of realizations of
the random variables &, for times 7 between t; and t, and of a selection of cones in

19

This manuscript is for review purposes only.



613
614
615

616
617
618
619

620

635

623
624

627

628
629
630
631
632
633
634

=
—
8
)
=

. 4 dP(cs) ~1<25<0 0< 2y <1
- I ) T ace: ébd a?+b? 11— a?+b° ~1
R o des | 5agy( ©2) | Sagey (—L+72)
2 2 2
[ 7(7); 5’53/2" ' 0_\/5 I 0_\/5 _ .
; c\/ﬁ d(ig s dc{; _ﬁ( 1 Iz) _ﬁ( 1+I2)
o o7,

Figure 8: The coupling constraint polyhedron Ps; and V3 for two distributions of cj3.

Nie, at the same times. Note that, by the independence assumption, all the subtrees
of Ty, , starting from a node of depth ¢ —ty are the same as Tz, ++. We denote by Iv(7Tz,)
the set of leaves of Ty,.

COROLLARY 4.7 (Equivalent finite tree problem). Define the quantized proba-
bility cost ¢, = ¢ n,i¢, and probability p, := Ht0<rgtp£TﬁT,NT\£w for all nodes
v = (N; & )g<r<t- Then, the cost-to-go functions associated with (1.1) are given

by

Vi (o) = min Z puC,) T,

x
( I/)VE7—1,0 VE'T,‘,O

s.t. Az, + Bz, <b Vv € Te, \Iv(Ti,), YV = v

for all 2 <ty < T — 1. Here, xg is the value of x at the root node of T¢,, and the
notation Y = (v, N, A, B,b) = v indicates that p ranges over the set of children of v.

4.3. Illustrative example in 3SLP. We now illustrate the exact quantization
result by considering the following three-stage stochastic linear problem:

min cixy +E min coxs + E min Cc3T3
z1€ER|z1EP; 22€R | (z1,22)EP> 23€R | (z2,23)EP;3
Vs (z2)
Vao(z1)

with P, = {($1,$2) € R2| —05< 22 <13, 1 <2y —29 < 3} and P; = {(%2,503) S
R? | ||(z2, 23)[1 < 2}. We compute V3 (see Figure 8) and the chamber complex P,
composed of the cells {—1}, [—1,0], {0}, [0,1] and {1}.

Thanks to P, and the coupling polyhedron P», we compute the chamber complex
Py whose chambers are {0.5},[0.5,1],{1},[1,2],{2},]2,2.5],{2.5},[2.5, 3],{3},[3,4] and
{4} (see Figure 9). We deduce the differents normal fans, for each chambers of P;
(see Figures 10 and 11).
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where ()2 is the polyhedral function Q2 : (z1,22) = V3(22) + I3, z)ep, and Po g,
is in brown, its normal fan N (FEs; ., ) in green for ¢z following the standard normal
distribution and different values of z.

5. Complexity. Hanasusanto, Kuhn and Wiesemann showed in [26] that 2-stage
stochastic programming is fP-hard, by reducing the computation of the volume of a
polytope to the resolution of a 2-stage stochastic program. Nevertheless, we show
that for a fixed dimension of the recourse space, 2-stage programming is polynomial.
Therefore, the status of 2-stage programming seems somehow comparable to the one
of the computation of the volume of a polytope — which is also both §P-hard and
polynomial when the dimension is fixed (see [33] or [23, 3.1.1]). Another example of
fP-hard problems that are fixed dimension polynomial is the problem of counting the
integer points in a given polytope (see [34]) We shall see that a similar result holds
for multistage stochastic linear programming.

We first give a summary of our method. A naive approach would be to use directly
the exact quantization result Theorem 3.2, for every x. However, even in the 2-stage
case, the latter yields a linear program of an exponential size when only the recourse
dimension m is fixed. Indeed, the size of the quantized linear program, (2SLP) is
polynomial only when both n and m are fixed. This is because /\Uec( Pr) —N, can
have, by McMullen’s and Stanley’s upper bound theorems ([39, 52]), an exponential
size in n and m, and these bounds are tight. Hence, to handle the case in which only
the recourse dimension m is fixed, we need additional ideas. We use the quantization
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result, Theorem 3.2 only for a fized =, observing that when m is fixed, N'(P;) has a
polynomial size. We thus have a polynomial time oracle that gives the values V(z)
by Theorem 3.2 and a subgradient g € 9V (x). Then, we rely on the theory of linear
programming with oracle [24], working in the Turing model of computation (a.k.a. bit
model). In particular, all the computations are carried out with rational numbers. We
now provide the proofs. subsection 5.1 deals with exact models whereas subsection 5.2
allows arbitrary probability distributions thanks to the use of approximate oracles.

5.1. Multistage programming with exact oracles. Recall that a polyhe-
dron can be given in two manners. The “H-representation” provides an external
description of the polyhedron, as the intersection of finitely many half-spaces. The
“V-representation” provides an internal representation, writing the polyhedron as a
Minkowski sum of a polytope (given as the convex hull of finitely many points) and
of a polyhedral cone (generated by finitely many vectors).

We say that a polyhedron is rational if the inequalities in its H-representation
are rational or, equivalently, the generators of its V-representation have rational coef-
ficients. We shall say that a (convex) polyhedral function V' is rational if its epigraph
is a rational polyhedron.

Recall that, in the Turing model, the size (or encoding length see [24, 1.3]) of an
integer k € Z is (k) := 1 + [logy(|k| + 1)]; the size of a rational r = % € Q with p
and ¢ coprime integers, is (r) := (p) + (q). The size of a rational matrix or a vector,
still denoted by (-), is the sum of the sizes of its entries. The size of an inequality
a'z < Bis (a) + (B). The size of a H-representation of a polyhedron is the sum of
the sizes of its inequalities and the size of a V-representation of a polyhedron is the
sum of the sizes of its generators.

If the dimension of the ambient space is fized, one can pass from one representation
to the other one in polynomial time. Indeed, the double description algorithm allows
one to get a V-representation from a H-representation, see the discussion at the end
of section 3.1 in [21], and use McMullen’s upper bound theorem ([39] and [24, 6.2.4])
to show that the computation time is polynomially bounded in the size of the H-
representation. A fortiori, the size of the V-representation is polynomially bounded
in the size of the H-representation. Dually, the same method allows one to obtain
a H-representation from a V-representation. Hence, in the sequel, we shall use the
term size of a polyhedron for the size of a V' or H-representation: when dealing with
polynomial-time complexity results in fixed dimension, whichever representation is
used is irrelevant. In particular, we define the size (V) of a rational cone N as the
size of a H or V representation of N.

We first observe that the size of the scenario tree arising in the exact quantization
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result becomes polynomial when suitable dimensions are fixed.

PROPOSITION 5.1. Lett € {2,...,T}, and suppose that the dimensions ny, ..., nr
and the cardinals §(supp &), ..., t(supp &r) are fized. Let T be the scenario tree con-
structed in Corollary 4.7. Then, the subtree of T rooted at an arbitrary node of depth
t can be computed in polynomial time in Zfzt > ecsupp(en) (&)

Proof. Recall that a node of depth ¢ of T is labeled by a sequence (N, &)t <<t
where N, describes N; ¢ = /\aePt ¢ —Ni¢.0, Where Py ¢ is defined in (4.5a) by Py ¢ :=
C(Rn‘ X Prgy1 A f(Pt(f)),ﬂ';?::;’m), and Piy1 = /\fesuppgt+1 ,Pt+175~

Assume by induction that Py and the subtrees of 7 rooted at a node of depth
t 4+ 1 can be computed in polynomial time in Z;F:Hl 2 cesupp(e.) (&) Then Py is

polynomial in Zz:t +1 Dgesupp(e,) (&) 1t is well known that (see [55, 3.9]) the number
of chambers of a chamber complex C(Q, 7) is polynomial in (Q) when both dimensions
are fixed. Thus, for each £ € supp(&;) Py ¢ is polynomial in (£) + (P41) and thus in
Z?:t > ecsupp(e.) (€) and we can compute the (maximal) chambers of the complexes
P;.¢ thanks to the algorithm in [10, 3.2] in polynomial time.

For each chamber o of P;¢, thanks to a linear program, we find z € ri(¢) in
polynomial time. The number of cones in N; ¢ , = N'(P;(£),) is equal to the number
of faces of the fiber P;(£), which is polynomially bounded in the number of constraints
q < (&) when the dimension n; is fixed. Indeed, the McMullen upper-bound theorem
[39], in its dual version, guarantees that a polytope of dimension m with f facets has
O(fLlm/2]) faces, see [47]. Thus, N ¢, is polynomial in (). By taking the common
refinements, we can construct, in polynomial time, the nodes of 7 of depth ¢.

We recall the theory of linear programming with oracle applies to the class of
“well described” polyhedra which are rational polyhedra with an a priori bound on
the bit-sizes of the inequalities defining their facets, we refer the reader to [24] for a
more detailed discussion of the notions (oracles) and results used here.

DEFINITION 5.2 (first-order oracle). Let f be a rational polyhedral function. We
say that  admits a polynomial time (exact) first-order oracle, if there exists an oracle
that takes as input a vector x and either returns a hyperplane separating x from
dom(f) if x ¢ dom(f) or returns f(x) and g € OV (z) if x € dom(f), in polynomial
time in (x).

LEMMA 5.3. Let Q C R? be a polyhedron, ¢ € R? a cost vector and f be a polyhe-
dral function given by a first-order oracle. Futhermore, assume epi(f) and Q are well
described. Then, the problem mingeg c'x+ f(z) can be solved in oracle-polynomial

time in (c) + (epi(f)) + (Q).

Proof. The proof follows from the analysis of the ellipsoid method by Grotschel,
Lovész and Schrijver. More precisely, the case where dom(f) = R? is tackled in
Theorem 6.5.19 in [24] which shows that minimizing a polyhedral function with a
well described epigraph over~Rd can be done in polynomial time. If f has a general
domain, we can write f = f 4 Iqom f Where f is a polyhedral function with a well
described epigraph and such that domf = R?%. E.g., we may obtain such an f by
considering the inf-convolution of f with the polyhedral function L||-||oo where L > 0
is the Lipschitz constant of the restriction of f to its domain, with respect to the
sup-norm, meaning that |f(z) — f(y)| < L[|z — y||« for all z,y € dom f and that L is
the smallest constant with this property. Then, it is immediate to see that fcoincides
with f on dom f and that it is everywhere finite. Moreover, f is still well-described.
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Then, noting that epi(f) = epi(f)N(dom(f) x R), we can adapt the proof of Theorem
6.5.19, ibid., using Exercise 6.5.18 in this reference, which states that the intersection
of well described polyhedra is well described. ]

We do not require the distribution of the cost ¢ to be described extensively. We
only need to assume the existence of the following oracle.

DEFINITION 5.4 (cone-valuation oracle). Let ¢ € L' (Q, A,P, R™) be an integrable
cost distribution such that, for every rational cone N, the quantized probability pn and
quantized cost ¢ are rational. We say that ¢ admits a polynomial time (exact) cone-
valuation oracle, if there exists an oracle which takes as input a rational polyhedral
cone N and returns py and ¢y in polynomial time in (N).

THEOREM 5.5 (Cone valuation to first-order oracle). Consider the value func-
tions of MSLP defined in (1.2) . Assume that T,na,...,ny, f(supp &), - - - ,f(supp &7)
are fived integers, and that (ci,&)a<icr Satisfies Assumption 2. Assume in addi-
tion that, every vector & € supp(&;) has rational entries and that the probabilities
Dig = P[St = §] are rational numbers. Assume finally that every random variable c;
conditionally to {& = &}, denoted by ¢, ¢, admits a polynomial-time cone-valuation
oracle (see Definition 5.4).

Then, for all t > 2, V; admits a polynomial time first-order oracle.

Proof. We start with the 2-stage case with deterministic constraints. We recall our
notation V(x) := E[minyeRm cly + HAy+B$<b]. Let £ € R™ be an input vector. We
first check if z € m(P) = dom(V'). By solving the dual of min,egm{ 0| Ay < b— Bz},
we either find an unbounded ray generated by A € R? such that A >0, AT A =0 and
AT(b—Bz) <0oray e R™ such that Ay < b— Bz, so that z € m(P). In the former
case we have z ¢ m(P), and we get a cut {2’ € R" |\T B2’ = W}, separating
m(P) = dom(V) from z.

So, we now assume that x € w(P), i.e., V(z) < +00. We next show that we
can compute V(z) and a subgradient « € 9V (x) in polynomial time. Indeed, the
McMullen upper-bound theorem [39], in its dual version, guarantees that a polytope
of dimension m with f facets has O(fL"™/2]) faces, see [47]. Since the number of
cones in N(P,) is equal to the number of faces of P, which is polynomially bounded
in the number of constraints ¢ < (£), N (P;) is polynomial in (). Thus, since ¢ is
given by a cone valuation oracle, we can compute in polynomial time the collection
of all quantized costs and probabilities ¢y and Py, indexed by N € —A(P;). Then,
by Theorem 3.2, we can compute V(z) by solving a linear program for each cone
N € —N(P,). Similarly, Theorem 3.6 allows us to compute a subgradient o € OV ().
All these operations take a polynomial time.

The case of finitely supported stochastic constraints reduces to the case of deter-
ministic constraints dealt with above, using dom(V) = Neesuppem(P(§)) and V(z) =
Z&Gsuppﬁpfv(‘rK) where V(x|§) =E [V(LU, & S) | £ = 6]

We finally deal with the multistage case in a similar way, using the quantization
result Corollary 4.7 in extensive form. Applying Proposition 5.1, the quantized costs
and probabilities arising there can be computed by a polynomial number of calls to
the cone-valuation oracle. This provides a first order oracle for the expected cost-to-go
function V4. 0

We now refine the definition of cone-valuation oracle, to take into account sit-
uations in which the distribution of the random cost ¢ is specified by a parametric
model. We shall say that such a distribution admits a polynomial-time parametric
cone-valuation oracle if there is an oracle that takes as input the parameters of the
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distribution, together with a rational cone N, and outputs the quantized probability
pn and cost ¢y. Especially, we consider the following situations:
1. Deterministic distribution equal to a rational cost c. We set (¢) := (c¢)
2. Ezponential distribution on a rational cone K with rational parameter 6. We
set (c) == (K) + (0)
3. Uniform distribution on a rational polyhedron @ such that Aff(Q) = {y €
R™ | Vj € J C [m],y; = ¢; € Q} where J is a subset of [m] and ¢; are
rational numbers (in particular, @ is full dimensional when J = (). We set:
(c) = (Q)
4. Miztures of the above distributions, i.e., convex combination with rational
coefficients (A\¥)ey of distributions of random variables (cx)kepy satisfying
1. 2. or 3. Then, we set (c) = 22:1<ck> + (Ag)-

THEOREM 5.6. Assume that the dimension m is fized, and that c is distributed
according to any of the above laws (deterministic, exponential, uniform, or mizture).
Then, the random cost ¢ admits a polynomial-time parametric cone-valuation oracle.

Proof. 1. Case of a deterministic distribution. We first check whether ¢ € ri(N),
which can be done in polynomial time, see section 6.5 of [24]. Then, if ¢ € ri(V), we
set ¢y = c and py = 1 otherwise ¢y =0 and py = 0.

2. Case of an exponential distribution. Since the dimension is fixed, for every
polyhedron R, we can triangulate R N supp(c) and partition it into (relatively open)
simplices and simplicial cones (Sk)rep), and by Stanley upper bound theorem, the
size 1 of the triangulation is polynomial in (R). By using the exponential valuation
of a simplicial cone in Table 1 see also [1, (8.2.2)] or [9] , we compute in polynomial
time pr = 22:1 Ps, and ¢p = 22:1755196&/151? if pr = 0 and ¢g = 0 otherwise.

3. Case of a uniform distribution. After triangulating (as in the case of an
exponential distribution), we may suppose that the support of the distribution is a
simplex S, so that @ = S. If this simplex S is full dimensional, then its volume is
given by a determinantal expression, and so, it is rational (see e.g., [23] 3.1). Then,
the formulas of Table 1 yield the result. If this simplex is not full dimensional, we
have Aff(S) = {y € R™ | Vj € J,y; = ¢;}, a similar formula holds, ignoring the
coordinates of y whose indices are in the set J.

4. Case of miztures of distributions. Trivial reduction to the previous cases. 0O

REMARK 5.7. The conclusion of Theorem 5.6 does not carry over to the uniform
distribution on a general polytope of dimension k < n. The condition that Aff(Q) =
{y e R™ | Vj € J,y; = q;} ensures that the orthogonal projection on Aff(Q) preserves
rationality, which entails that the k-dimensional volume of Q is a rational number. In
general, this volume is obtained by applying the Cayley Menger determinant formula
(see for example [23, 3.6.1]), and it belongs to a quadratic extension of the field of

rational numbers. For example, if Ng is the canonical simplex {\ € R%M!| Ef;l i =

1} then Vol(Ag) = Y4H.
For the Gaussian distribution, ¢s and ps can be determined in terms of solid
angles (see [45]) arising in Table 1. These coefficients are generally involving the

number m and Euler’s T function, and thus they are irrational.

COROLLARY 5.8 (MSLP is polynomial for fixed dimensions). Consider the prob-
lem (1.1) . Assume that T,na,...,ny, f(supp&s), ---.B(supp&r) are fized inte-
gers, that (¢, &)o<icr satisfies Assumption 2. Suppose in addition that, for all
& € supp(&), pre = P[Et = f] and & are rational and that the random variable
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¢, conditionally to {& = £}, denoted by ¢, ¢, is of the type considered in Theorem 5.6
Then, Problem (1.1) can be solved in a time that is polynomial in the input size

(1) + (61) + X 1—s Xecaupnen ({€re) + (€) + (pre))-

Proof. We first show by backward induction that the epigraph epi(V3) is well
described. The dynamic programming equation (1.2) allows us to compute a H-
representation of epi(V;) from a H-representation of epi(V;4+1). Indeed, by Theo-
rem 4.6, we have

Vilwio) = > pre Y, Punie Jmin Qi Nje(@e, Te—1) , with
gesupp(€e) NNy -

Qe.Nje(Te, w41) = EZN\gﬂft + Ver1(@e) + Ly a0 )erie) -
We then have

epi(Qr nje) = (epi(ws = & yjee) + epi(Vig1)) N (P(§) x R),
epi(Vy) = Z Dt e Z Penje TatmbE0H(epi(Qnie))

£esupp(&) NENy ¢

recalling that 7, ;2" denotes the projection mapping (z;_1, 7, 2) + (24_1,2). Well

described polyhedra are stable under the operations of projection, intersection, and
Minkowski sum, see in particular [24, 6.5.18]. It follows that epi(V;) is well described.
Then, the corollary follows from Lemma 5.3, Theorem 5.5 and Theorem 5.6. ]

5.2. Multistage programming with approximate oracles. We finally con-
sider the situation in which the law of the cost distribution is only known approxi-
mately. Hence, we relax the notion of cone-valuation oracle, as follows.

DEFINITION 5.9 (Weak cone-valuation oracle). Let ¢ € L(2, A,P,R™) be an inte-
grable cost distribution. We say that ¢ admits a polynomial time weak cone-valuation
oracle, if there exists an oracle which takes as input a rational polyhedral cone N to-
gether with a rational number € > 0, and returns a rational number py and a rational
vector ¢n such that |py — Pn| < € and ||y — én|| < €, in a time that is polynomial
in (N) + (g).

DEFINITION 5.10 (Weak first-order oracle). Let f be a rational polyhedral func-
tion. We say that f admits a polynomial time weak first-order oracle, if there ezists an
oracle that takes as input a vector x and either returns a hyperplane separating x from
dom(f) if x ¢ dom(f) or returns a scalar f and a vector g such that |f — f(x)| < e
and d(g,0f(z)) < e if v € dom(f), in a time which is polynomial in (z) + (¢).

REMARK 5.11. In our definition of weak first order oracle, we require that fea-
sibility (x € dom(f)) be tested exactly, whereas the value and a subgradient of the
function are only given approximately. This is suitable to the present setting, in
which the main difficulty resides in the approxzimation of the function (which may
take irrational values for relevant cost distributions).

We now rely on the theory of linear programming with weak separation oracles devel-
oped in [24]. Let C' C R? be convex set, for e > 0, let S(C,¢) := {x € R | ||[z—y| < &}
and S(C,—¢) := {x € R? | B(z,¢) C C} where B(z,¢) denotes the Euclidean ball
centered at x of radius €. A weak separation oracle for a convex set C C R? takes
as argument a vector z € R? and a rational number £ > 0, and either asserts that
x € S(C,¢) or returns a rational vector v € R?, of norm one, and a rational scalar J,
such that vy < yTx + ¢ for all y € S(C, —¢).
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THEOREM 5.12 (Weak cone valuation to weak first-order oracle).  Consider
the value functions of problem (1.1) defined in (1.2) . Assume that T,ng,...,nr,
f(supp&2), - --.4(supp&r) are fized integers, and that (ci, &)a<i<r Satisfies Assump-
tion 2. Assume in addition that, every vector & € supp(&:) has rational entries and
that the probabilities p; ¢ = P[{t = §] are rational numbers. Assume finally that the
diameters of dom V4, for t > 2, are bounded by a rational constant R, and that every
random variable ¢, conditionally to {§; = £}, denoted by ¢, ¢, admits a polynomial-
time weak cone-valuation oracle (see Definition 5.4).

Then, for all t = 2, V; admits a polynomial time weak first-order oracle.

Proof. The proof is similar to the one of Theorem 5.5. The main difference is that
we need an a priori bound R on the diameter of dom V;, so that if d(g, 0Vi(x)) < €,
then, using Cauchy-Schwarz inequality, Vi(y) — Vi(z) > ¢ - (y — ) — eR holds for all
y € domV;. Together with and approximation of V;(x), this allows us to get a weak
separation oracle for the epigraph of V;. 0

COROLLARY 5.13 (Approximate (MSLP) is polynomial-time for fixed recourse
dimension m). Consider Problem (1.1). Let T,na,...,ny, t(supp&s2), - ,4(supp &r)
be fized integers. Assume finally that the diameters of dom V;, fort > 2, are bounded
by R € Q, and that for all & € supp(&:), the random wvariable ¢; conditionally to
{& = &}, denoted by c; ¢, admits a polynomial-time weak cone-valuation oracle.

Then, there exists an algorithm that either asserts that Problem (1.1) is infeasible
or find a feasible solution =* whose cost does not exceed the cost of an optimal solution
by more than €, in polynomial-time in () + {(c1) + (&1) + Zthz 2 eesupp(e,) ((Cre) +
(€) + (pr,e)) + (R). In particular, its complezity is polynomial in log(1/e).

Proof. This follows from Theorem 5.12, using the result analogous to Lemma 5.3
for weak separation oracles, see [24, 6.5.19]. d

Finally, we show that every absolutely continuous cost distribution, with a suitable
density function, admits a polynomial-time weak cone-valuation oracle.

DEFINITION 5.14. A density function f : R™ — R, is combinatorially tight if:
1. there is a polynomial time algorithm which, given a rational number € > 0,
returns a rational number r > 0 such that f\lw\|>r f(z)dr < e.
2. there is a polynomial time algorithm, which given a rational vector x € R”,
and a rational number e > 0, returns an & approzimation of f(x).

The terminology is inspired by the notion of tightness from measure theory (analogous
to condition 1 in Definition 5.14).

We shall need a classical result on the numerical approximation of multidimen-
sional integrals. The total variation in the sense of Hardy and Krause, || f|svuk, of a
function f on a n dimensional hypercube is defined in [11, Def. p.352]). In particular,
if f is of regularity class C", || f||svuxk is finite. The error made when approximating
the integral of a function of n variables by its Riemann sum taken on a regular grid
with k points is bounded by (n||f||pvuk)/EY", see [11, p.352].

PROPOSITION 5.15. Suppose that a cost distribution ¢ admits a density function
f:R™ = Ry, that is such that the function (1+||-||) f is combinatorially tight and that
it has a finite total variation in the sense of Hardy and Krause, bounded by an a priori
constant. Suppose that the dimension n is fired. Then, ¢ admits a polynomial-time
weak cone valuation oracle.

Proof. Given a rational cone N, we need to approximate the integrals [ f(c)dc
and f y ¢f(c)de, up to the precision . Using the tightness condition, it suffices to
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approximate the integrals of the same functions restricted to the domain N, := N N
B (0,7), where Bo(0,7) denotes the sup-norm ball of radius r, and the encoding
length of r is polynomially bounded in the encoding length of e. We only discuss
the approximation of |, w, cf(c)dc (the case of / n, f(c)dc being simpler). We denote
by ¢, the approximation of |, N, cf (¢)de provided by taking the Riemann sum of the
function ¢ — ¢f(c) over the grid ([—r,r))" N ((r/M)Z)"™, which has (2M)" points.
Then, setting g := (1 + || - ||)f, it follows from [11, Th. p 352] recalled above that
I fNr cf(c)de —¢n, || < nllgllBvak/(2M). Hence, for a fixed dimension n, we can get
an e approximation of [ ¢f(c)dc in a time polynomial in the encoding length of .0

REMARK 5.16. Proposition 5.15 and Corollary 5.13 entail that, under the pre-
vious fized-parameter restrictions (including dimensions of the recourse spaces), the
MSLP problem is polynomial-time approximately solvable for a large class of cost dis-
tributions. This applies in particular to distributions like Gaussians, which are com-
binatorially tight. In this case, condition 1 of Definition 5.14, whereas condition 2
follows from the result of [8], implying that the exponential function, restricted to the
interval (—oo, 0], can be approximated in polynomial time.

6. Conclusion and perspectives. This polyhedral approach enlightens the
structure of multistage stochastic linear problems. It allows us to derive theoretical
complexity results for a large class of random variables. However, the combinatorics
of the polyhedral used suffers from the curse of dimensionality and all chamber com-
plexes and normal fans cannot be computed in practice in high dimension. To avoid
this problem, we leverage in [17] the local exact quantization result to define general-
ized adaptive partition based algorithms for 2SLP when the constraints have general
distributions. This technique can be adapted to the multistage setting, see [18]. More-
over, we exploit the present approach to develop, in [19], a “higher order” simplex
algorithm, following a path on the vertices of the chamber complex, and updating lo-
cally the normal fan. Finally, these new objects, and in particular the weighted fiber
polyhedron may allow us to better understand the dependence of MSLP with the
distribution of random variables, for example by linking it with the nested distance
[41], in order to improve the results on scenario tree approximations, whether they
are statistical or not.
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